NeuroMessenger: Towards Error Tolerant Distributed
Machine Learning Over Edge Networks

Song Wang, Xinyu Zhang
University of California San Diego
{sowang, xyzhang}@ucsd.edu

Abstract—Despite the evolution of distributed machine learning
(ML) systems in recent years, the communication overhead in-
duced by their data transfers remains a major issue that hampers
the efficiency of such systems, especially in edge networks with
poor wireless link conditions. In this paper, we propose to explore
a new paradigm of error-tolerant distribute ML to mitigate the
communication overhead. Unlike generic network traffic, ML
data exhibits an intrinsic error-tolerant capability which helps
the model yield fair performance even with errors in the data
transfers. We first characterize the error tolerance capability
of state-of-art distributed ML frameworks. Based on the obser-
vations, we propose NeuroMessenger, a lightweight mechanism
that can be built into the cellular network stack, which can
enhance and utilize the error tolerance in ML data to reduce
communication overhead. NeuroMessenger does not require per-
model profiling and is transparent to application layer, which
simplifies the development and deployment. Our experiments on
a 5G simulation framework demonstrate that NeuroMessenger
reduces the end-to-end latency by up to 99% while maintaining
low accuracy loss under various link conditions.

I. INTRODUCTION

Owing to the standardization of 5G multi-access edge com-
puting (MEC) [1] and booming development of machine learn-
ing (ML) applications, we have witnessed a growing interest in
synergizing the user equipment (UE), MEC, and the cloud to
boost mobile ML in recent years [2]-[4]. The combined compu-
tation power from many devices and the flexibility of splitting
workloads enable this new distributed ML paradigm to break
the limits of scarce computation resource and unpredictable
latency, which used to hinder the UE and cloud based execution,
respectively. Among the many proposed solutions of distributed
ML, two have recently gained major traction: Split ML [5]-
[8] dynamically assigns parts of a model inference process to
different computing nodes based on network conditions and
computation resources, to alleviate the pressure of computation
on UE devices and potentially optimize end-to-end latency
and energy consumption [3], [5], [8]-[10]. Federated Learning
(FL), on the other hand, distributes the training of a model
to a federation of participant devices. Each device (usually
a UE) trains a copy of the model with its local data, and
updates the learned weights to a central parameter server (PS)
for aggregation. An FL system utilizes the computation power
of a large number of mobile devices, while eliminating the need
for uploading privacy-sensitive raw data to the cloud [11], [12].

Despite the unprecedented computation power scale-up,
these distributed ML methods suffer from one major bottleneck:
due to their distributed architecture, computation nodes need to
exchange data with each other (referred to as ML data) inten-

Noisy link

Initial

ransmission|

NACI
| NACK Rx

Retr. #1

| nack ™

Fig. 1: An example of split ML over a lossy edge network.

Retr. latency

—“Tree”

L2 2 A 4

sively, which may cause significant communication overhead.
Specifically, split ML transmits intermediate layers’ output data
from the UEs to MECs, and FL’s participating devices upload
the locally trained model weights to the parameter server. Since
the data source is usually located at the UE, split ML and FL
mainly rely on the cellular uplink for data transfer. Due to the
limited power budget of mobile devices, the uplink typically
experiences lower link quality [13]. As illustrated in Fig. 1,
under poor link conditions, block errors occur more frequently
and the cellular link needs to attempt multiple retransmissions
to correct the errors. This tends to hamper latency sensitive ML
applications such as remote driving, remote-controlled robotics,
and AR display/gaming which require a stringent end-to-end
latency of around 10 ms [14].

Existing works have approached the communication over-
head problem by compressing the ML data before transmission
[15], [16]. Such approaches often need non-trivial redesign
on the application level, and are unaware of the low-layer
overhead due to poor link quality. In this paper, we propose to
leverage the intrinsic error-tolerant capability of the ML data
to circumvent the communication overhead. Unlike the general
cellular network traffic that requires error-free data transmis-
sion, we observe that distributed ML may still perform the
inference or training operations with fair accuracy, even with
the present of errors in data transfer. As a result, retransmission
becomes unnecessary as long as the error-induced accuracy loss
is tolerable. In other words, such error tolerance capability in
ML data reduces the need for retransmissions and consequently,
the overall communication overhead.

To realize this principle, we present a first study on the error-
tolerant capability of distributed ML models. By examining
representative split ML and FL model execution over 5G edge
networks, we address the following key questions:

How well can the ML data tolerate errors? We perform a
layer-level characterization of the accuracy performance versus

error rate under a wide range of link conditions and block
error patterns. Our experiments reveal that the error tolerance
capability exists in most of the commonly used deep neural
network (DNN) layers in split ML and FL. However, the
specific accuracy losses vary significantly across different types
of DNN layers. For a certain layer, the accuracy loss and
error rate are strongly correlated, and hence the accuracy
performance of the ML model can be profiled as a function
of error rate. In addition, the ML data in split ML suffer more
accuracy loss from burst errors, whereas FL is agnostic to error
patterns.

How to enhance the error-tolerant capability of ML
models? Based on the error-tolerance characterization, we
propose two techniques to enhance error tolerance in distributed
ML.: Interleaved coding utilizes the property that split ML data
is prone to burst errors. It randomly interleaves the ML data
sequence so that the burst errors are jumbled into smaller pieces
and spread over time, which mitigates their impacts on the
model accuracy. Importance-based coding facilitates Unequal
Error Protection (UEP) on parameters with different values and
reduces the error rate on high-valued parameters which are
more likely to impact the model accuracy.

How to leverage the error-tolerant capability to improve
the efficiency of distributed ML in wireless edge net-
works? We propose NeuroMessenger, a lightweight cellular-
native mechanism that reduces the latency of distributed ML
over edge networks. NeuroMessenger is jointly executed by the
transmitter and receiver of the ML data, i.e. UE and basestation
co-located with MEC. It is transparent to ML applications and
tightly integrated with the devices’ protocols stack which aligns
with 3GPP’s vision for future edge intelligence system [14]. For
an ML model, NeuroMessenger performs a layer-wise profiling
of the error rate to accuracy mapping offline. At runtime,
NeuroMessenger on transmitter first reduces the ML data size
by pruning the redundant parameters. Then it enhances the
error tolerance of the ML data by applying the aforementioned
enhancement schemes. The encoded data is then sent over
the cellular edge link. At the receiver end, NeuroMessenger’s
retransmission controller retrieves an estimation of the channel
state and estimates the corresponding error rate. Then, based
on the error rate to accuracy profiles from the offline stage,
the retransmission controller predicts if the accuracy can meet
the application requirement and determines if a retransmission
is necessary and how aggressive the retransmission should be.
By shrinking the need for retransmission, NeuroMessenger sub-
stantially improves the communication efficiency of distributed
ML while maintaining a user-defined accuracy requirement.
With NeuroMessenger, the edge link can aggressively choose
a high order modulation and coding scheme, which leads to
high raw bit-rate and high block error rate under moderate
or low channel quality. NeuroMessenger also greatly reduces
the complexity of distributed ML system’s development and
deployment by making the communication overhead reduction
mechanism transparent to applications.

We evaluate NeuroMessenger on a 5G NR simulator. Our

experiments adopt the typical PHY settings of a 5G uplink
(e.g., modulation and coding scheme, bandwidth and sub-
carrier spacing, transport block size, efc.). We choose state-
of-art image classification and speech recognition models as
representative ML applications. Our experiment results show:
(i) NeuroMessenger reduces the communication latency by up
to 95% comparing to baselines while still maintaining less
than 10% accuracy loss under an extreme link SNR of -2 dB.
(i) NeuroMessenger is effective under a wide range of error
rates. We observe 20% to 99% latency reduction and less than
5% accuracy loss under 0.1 to 0.95 block error rate. (iii) For
split ML models, NeuroMessenger is effective regardless of the
partitioning point within the models.

The major contributions of this paper are as follow: (i) A First
characterization of error tolerant capability in distributed ML.
(i) A novel system that enhances and utilizes error tolerant
capability to reduce communication overhead in distributed
ML. (iii) Experimental verification of NeuroMessenger on a
5G edge network environment with representative distributed
ML settings.

II. RELATED WORK
A. Distributed Edge Intelligence

Distributed ML on cellular edge servers has garnered much
interest in the past two years. In particular, the 3GPP standard-
ization group has envisioned a deep integration of split ML and
FL for mobile inference and training respectively [17]. Existing
research on split ML mostly focused on partitioning a DNN’s
computing load to two or more parts which are executed by
generic edge servers to meet latency or energy optimization
objectives [5]-[7]. The research on FL proposed new designs
on aggregation algorithm [12], [18], [19], participants selection
[20]-[22], and incentive mechanisms [23], [24] to improve
the communication efficiency or privacy. These works assume
the ML data is transmitted directly over the communication
links which usually over-protect the data integrity. When the
link condition is poor, frequent retransmissions may occur.
Even under good link conditions, the communication PHY
layer conservatively chooses the modulation and coding scheme
(MCS) that is most likely to work in an error-free manner,
rather than choosing one with high raw bit-rate but more block
errors. In contrast, we propose to build error tolerant capability
into the intermediate data, so that they can be salvaged in spite
of errors. With this measure, the edge network can avoid the
costly retransmissions, and can aggressively choose a high but
error-prone MCS level to improve communication efficiency.

B. ML communication overhead reduction

A classical approach to reduce the communication over-
head in edge ML is to compress the ML data. Yao et al
[25] proposed a NN-based compressor/decompressor design
that compresses the intermediate data following compressive
sensing theory. Hu et al. [26] adopted a similar NN-based
compressor/decompressor and leveraged the prior transmissions
to aid the decompression of current intermediate data. These

Continue inference (Split ML) or
Aggregation (FL)

= >
Raw feature maps or
Meta rfo "> modelweights, " _
(Spit ML or FL? l— > No additional .’
Model? - processing

Split layer?)

Application Off-the-shelf NN model

Feature maps (Split ML) or
Weights (FL)

Erred data with
accuracy guarantee

c
5t =
fTeTrorz] 2 5 2 |2 ErEe
[TE] 28| |E2 RN caao
Badal 2c 188 = = 2,5 |2 PReEs|
FOO] s 2ree— Radlul lngliuin
ne2ge £ 3
al=|® £ °© Qo
K | = a
o o H
M 2 g
H H:Hq User defined
=loa
= X y
PHY 8= H:Hj masl tolerance controller |
Offline profiling Inject uniformly .
| distributed errors| = A
~ o i+
5 = ~ e
Standard ol € ... » Top-1
dataset © B <) accuracy
o a =
= .
— Error rate/accuracy mapping

Fig. 2: NeuroMessenger system overview.

NN-based compression techniques greatly reduce the interme-
diate data size, but they bear two limitations. First, the NN
compressor/decompressor themselves require hours of training
for individual model and split point [25]. In the case where the
split point or the ML model needs to be constantly changed due
to network dynamics, e.g., in the context of online learning, it is
impossible to train the compressor/decompressor in real time.
Second, such compression approaches are heavily customized
to individual application, e.g., the compressor/decompressor are
jointly trained with the ML model. In contrast, NeuroMessen-
ger only needs a lightweight application-independent profiling
consisting of only the inference process which usually takes
less than 1/1000 of time to run compared to the training.

III. SYSTEM OVERVIEW

The system architecture of NeuroMessenger is shown in
Fig. 2. At runtime, the UE application runs off-the-shelf dis-
tributed models. It can pass the raw ML data to low layers
along with a small metadata indicating if the application is split
ML or FL, what the NN model is, and the splitting point for
split ML. NeuroMessenger, as part of the cellular-native stack,
recognizes the metadata and acts on the ML data accordingly.
For split ML, NeuroMessenger first prunes the redundant data
(Sec. V-B), and then applies error tolerance coding (Sec. V-A).
As for FL, NeuroMessenger skips these two processes. The
resulting data and metadata are then fed to the original cellular
PHY layer and then transmitted to the basestation.

Upon receiving the data, the NeuroMessenger retransmission
controller on the basestation estimates how many retrans-
mission attempts are needed to balance the model accuracy
and communication overhead. Specifically, the retransmission
controller first uses the information in the metadata to find
the corresponding error rate to accuracy mapping function G,
which is profiled offline (Sec. V-B). It also retrieves the latest
uplink SNR measurement and estimates the corresponding
error rate r. Then, the controller compares estimated accuracy
under the current error rate G(r) and a user-defined minimal
tolerable accuracy a, and calculates the maximum number of
retransmission attempts n as follow:

g|
> |:|
zl =z ol 9
- mal > »S >
(8] oc <
= Redundant
values
12| 4 |-10] -2 12400 112|000
0|3|1]|-3 o300 120 olofo|o
3[-3|24|20 3]0 24|20 3 |24 30 24|0
0| 0 |11 1 0o |11 “]o|olo|o

Pooling output:
only one value in a
region is preserved

Activation output:
negative values are
dropped

Batch norm output:
Dense

Fig. 3: Layer composition of a typical neural network and a
demonstration of feature map redundancy: most of parameters
in the feature map from batch norm layer are dropped after the
pooling layer.

0 if G(r) > ay
F(r,a,) if G(r) <ay

n= ey
where F'(r1,72) calculates the minimal number of retransmis-
sion attempts to reduce error rate from r; to ro. For example,
F(0.8,0.5) = 2 means that to reduce error rate from 0.8 to 0.5,
the maximal number of retransmission attempts needed is 2. F’
is determined by the PHY layer MCS level and the channel
condition, and can be derived by existing predictive models
[27]. The basestation then signals the UE for retransmission
until n attempts or the data passes parity check. By eliminating
the retransmissions when G(r) > a,, and reducing the number
of retransmission attempts when G(r) < a,,, NeuroMessenger
alleviates the communication overhead.

Notably, NeuroMessenger separates the ML data transfer
from the main ML design, and thus it reduces the complexity
of the distributed ML system design while still providing
model-specific efficiency improvement. The lightweight offline
profiling also enables easy and fast adaptations of rapidly
evolving ML models to NeuroMessenger without any runtime
overhead.

IV. ERROR-TOLERANCE IN DISTRIBUTED ML

In this section, we first characterize the error tolerance
capability in a typical split ML setting. Then, based on the
characteristics, we propose and verify two techniques to encode
the intermediate data transfer and enhance error tolerance in
generalized split ML models.

A. A dissection of neural network models

To study the error tolerance in split ML, we must first
understand the structures of split ML and the neural network
(NN) models. A NN model consists of multiple consecutive
layers. During an inference task, a layer takes the output data
from its previous layer, commonly referred to as feature maps,
applies certain operations and feeds its own output feature maps
to the next layer. Despite numerous variants, most commonly
used convolutional neural network (CNN) models share the
same 4-layer building blocks, as shown in Fig. 3.

Convolution (conv) layer convolves the input data or feature
maps with a set of learned filters.

Batch norm (bn) layer normalizes a batch of feature maps.

Pooling (maxpool, avgpool) layer applies the maximum or
average function over a region in the feature maps and reduces
the region of parameters to a scalar.

Activation (sig, ReLu) layer applies a non-linear activation
function to individual parameters and maps the negative or
small valued parameters to zero.

In addition to the 4 basic layers in CNN, fully connected
layers, which linearly combine all feature maps, are often
used as a final classifier or an independent NN model for
classification tasks.

B. Characterizing error tolerance in split ML

We first demonstrate the impact of errors of intermediate
data transfer in split ML, with a pre-trained ResNetl18 model
[28]. ResNetl8 is a popular image classification CNN model
consisting of 54 layers. Due to its broad application and typical
layer structure, it is often used as the benchmark for distributed
ML designs [5], [25]. We assume an example split ML setting
where a UE and a MEC split the model at the 5th layer
over a noisy 5G link. The parameters in the feature maps are
stored in standard 32-byte float type. To investigate the impact
of different error patterns, we use two types of errors: (1)
burst errors represents the common error pattern in packetized
communications where an error corrupts an entire packet. To
match our 5G link assumption, we set the length of a packet
to 3777-byte blocks, a typical transport block size in 5G NR
[29]. (2) random errors represents a more general but rarer error
pattern where an error corrupts an random individual parameter
in the feature maps. The corrupted parameters are treated as
zeros in our characterization experiments. We vary the error
rate and test the corresponding top-1 inference accuracy on the
CIFAR100 dataset. Fig. 4 showcases the error rate to accuracy
mapping when splitting at two example layers (layer 4 and 26).
By examining the error rate to accuracy mapping at each layer,
we have the following key observations:

The vanilla split ML has limited error tolerant capability.
As shown in Fig. 4, the inference accuracy gradually decreases
to 0 as the error rate increases. This implies the feature maps
inherently possess error tolerance and may still produce correct
inference result under a non-zero error rate. We have the
same observation for the error rate to accuracy mappings of
all layers except for the fully connected layers. This inherent
error tolerant capability is mainly caused by convolution and
pooling layers after the splitting point which operate on local
regions and often have “soft outputs”, ie. float point type.
Even if a parameter is corrupted, the convolution and pooling
operations in the layers after the splitting point can still produce
similar values from other parameters in the same region and
eventually dilute the impact of the corrupted parameter. Note
that in both figures of Fig. 4, the accuracy under burst errors
is approximately linear with respect to the error rate, with
7% accuracy loss for every 10% error rate increase. For a
slightly noisy 5G uplink with 10% error rate [30], it will lead
to 7% accuracy loss, which is usually the accuracy gap between
an advanced NN model and a simple classifier. This implies

5 60 5 60

¢ g

<40 Sa0

s 20 * Burst error S 20 * Burst error

a o Random error = O Parameter error

0 0
0 20 40 60 80 100 0 20 40 60 80 100

(a) Error rate (%) (b) Error rate (%)

Fig. 4: Top-1 accuracy with different error rate applied to the
feature map from (a) layer 4, (b) layer 26.

Uncorrupted

Random errors

Burst errors

Received
Feature
map

=Corrupted

Fig. 5: A demonstration of impact of different types of errors on
feature maps: the top region of the frog shape is almost entirely
corrupted by block errors, while the random error preserves the
shape.

that the inherent error tolerance in ML data alone can hardly
combat the block errors in practical communication systems
without a major impact on inference accuracy.

Error tolerance is layer-dependent. The error rate to
accuracy mapping curve differs across layers, indicating that
under the same link condition, splitting at different layers yields
different accuracy. For example, at block error rate of 0.8,
layer 26 and 4 show accuracy of 78% and 52%, respectively.
Such gaps are observed for all other layers with accuracy
differences ranging from < 1% to 50%. This seemingly obvious
observation reveals the necessity for a layer-wise error rate
to accuracy profiling in the cases where the splitting layer is
dynamically selected.

Split ML is prone to burst errors. In Fig. 4, we see with the
same error rate, the block errors cause far more accuracy loss
than the random errors, i.e., up to 20% for layer 4 and 50% for
layer 26. For other layers in ResNet18, we also observe similar
accuracy gaps ranging from 20% to 60%. Similar to the first
observation, such vulnerability to burst errors originates from
the convolution and pooling operations. Since these operations
are applied to local regions, the output feature maps usually
show a similar pattern to the input feature maps in spite of
their different sizes. Fig. 5 shows a visualization of input and
output feature maps at the 5th layer (maxpooling) of ResNet18
with an image of a frog as input. We see that the basic shape
and the contour of the frog are preserved after the maxpooling
layer, even though the feature map size reduces from 24 x 24

R A N
IR

Top-1 accuracy
«a
o

o

+
I

1 2 83 4 5 6 7 8 9
Layer

i
10 11 12 13 14 15 16

Fig. 6: Top-1 accuracy distribution of VGGI11 FL under
BLER=0.1. We see the ranges of top-1 accuracy of batch norm
layers (3, 4, 8, 10, 12, 16) exceed 20 percent, indicating that
the batch norm layers’ weights are highly sensitive to errors
and the resulting accuracy cannot be estimated by error rate.

to 12 x 12. As a result, the random errors in the input feature
maps are usually diluted in the following layers.

Burst errors, on the other hand, corrupt long sequences of
parameters that usually span multiple local regions or even an
entire input feature map. Since convolution and pooling layers
can only produce zeros if all parameters in a local region are
corrupted (treated as zero in our experimental characterization),
the impact of burst errors is often preserved on the following
layers. Fig. 5 showcases such phenomenon. We see that under
burst errors, the top half of the frog contour is corrupted even
after a maxpooling layer. In comparison, the random errors
only corrupted a small region and the frog contour is preserved.
Hence, the burst errors are more likely to cause a large accuracy
loss than random errors.

C. Characterizing error tolerance in FL

As mentioned in Sec. I, instead of feature maps, the clients
in FL transfer the model weights. Hence, it is reasonable to
expect that FL possesses different error tolerance characteristics
than split ML. We investigate the impact of errors on a FL
system with the VGG11 model. We assume a typical FL system
with 20 participating devices, each training with % CIFAR-
100 dataset that follows i.i.d. distribution. The model weights
are aggregated using the widely-adopted FedAvg algorithm
[31] in a synchronized manner, i.e., in each epoch, one client
only uploads model weights one time. To avoid the impact
of heterogeneous link conditions, we assume the FL system
selects clients with similar link conditions and all clients share
the same error rate. To investigate layer-wise error tolerance,
we only apply errors to one layer’s weights for each trial. Note
that the activation and pooling layers are not considered in
the experiment since they do not have weights. The model
is trained over 50 epochs and then tested with the CIFAR-
100 testing set. For each layer and error rate, we repeat the
experiment 10 times. From the results, we make the following
key observations:

Batch norm layers in FL are not error-tolerant. Fig. 6
shows the top-1 accuracy when applying random errors with
10% error rate to each layer. Although most layers maintain
a stable accuracy for all 10 trials, layer 4, 8, 10, and 12
show a wide range of accuracy fluctuations up to 70%. Upon
further inspection, we found that all layers with larger than
20% accuracy fluctuations are batch norm layers. Fig. 8 further
shows the accuracy when the two batch norm layers experience
different error rates. We see such fluctuations exist persistently.

o
S
o
S

—F— Random error
—F—burst error

Top-1 accuracy
(%2
o

Top-1 accuracy
wn
o

—J— Random error
—J— burst error
0 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
(a) BLER (b) BLER
100 100

Top-1 accuracy
o
o

Top-1 accuracy
(2
o

—J— Random error —J— Random error
—F—burst error —J— burst error
0 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
© BLER (@ BLER

Fig. 7: Top-1 accuracy of VGGI11 trained in FL under different
block error rate applied to (a) 8st, (b) 11th, (c) 18th, and (d)
22th layers (conv).

=)
S
=)
S

—J— Random error
—F—burst error

—J— Random error
—F—burst error

™~

Top-1 accuracy
o
o

Top-1 accuracy
(2
o

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
(a) BLER (b) BLER

Fig. 8: Top-1 accuracy of VGGI1 trained in FL under different
block error rate applied to (a) 16st, (b) 19th layers (batch norm).

100 100
53— E
> >
5 =
o o
g 50 & 50
N a
g —F— Random error 'E —F— Random error
—J— burst error —J—burst error
0 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
(a) BLER (b) BLER

Fig. 9: Top-1 accuracy of VGG11 trained in FL under different
block error rate applied to (a) 25th, (b) 26th layers (fully
connected).

Unlike the convolution layers’ weights which only affect one
small region of a feature map, the weights in the batch norm
layers are applied to a batch of feature maps. Consequently,
the weight errors have a larger impact on accuracy. This result
indicates that ideally batch norm layers’ weights should be
transferred error-free.

FL is prone to both burst errors and random errors.
To investigate the impact of error patterns, we compare the
accuracy from two different types of error patterns. As shown
in Fig. 7 and 9, we see that for both convolution and fully
connected layers, random error and burst error have similar
impacts on model accuracy. This is because the training process
in ML has a forward phase and a backward phase. The forward
phase, essentially the same as the inference phase, computes the
inference result and the corresponding loss from the first layer
to the last layer, while the backward phase uses the loss to

compute the gradient of each layer propagating from the last
layer to the first layer. Similar to split ML, the convolution and
pooling layers dilute the errors in the forward phase and hence
reduces its negative impact on the model accuracy. However,
the same layers spread out errors to more parameters during
the backward phase which amplifies the impact of errors on the
model accuracy. As a result, there is no discernible advantage
of random errors over burst errors. This means FL’s error
tolerance cannot be improved by interleaved coding.

V. NEUROMESSENGER OPERATIONS
A. Error tolerance Enhancing Coding

Interleaved Coding The foregoing experiments hint that
split ML suffers more accuracy loss from burst errors than ran-
dom errors under the same error rate. In practice, however, due
to the packetization operation and wireless channel coherence,
the majority of the errors are in the form of burst errors [32].
To alleviate the impact of such burst errors, we adopt an inter-
leaved coding method to encode the feature maps. Interleaved
coding is a family of codes aiming to convert the burst errors
to random errors by interleaving the data sequence [33]. The
basic idea is that the interleaving operation redistributes a long
sequence of errors across many short separated bursts.

To showcase the interleaved coding, we apply it to the
ML data in the burst error experiment in Sec. IVB and
compare the top-1 accuracy. Without loss of generality, we
use random interleaved coding [34]. The code generates a
randomized permutation whose size equals the number of float
point numbers in ML data and reorders the numbers in the data
accordingly. To understand the result across different models,
we add VGG11 [35], another popular image classification NN,
to the experiment. We choose 4 different split points for each
model, each at a quadrate point of the model. Fig. 10 and 11
show the the results.

We see that interleaved coding improves accuracy by up
to 190% for all split points in ResNetl8 and first 3 points
in VGG11 (we will explain the last point later). Specifically,
the last two points in ResNet18 show less than 1% accuracy
loss when error rate is less than 50% while the baseline loses
45% accuracy at the same error rate. The result implies the
interleaving technique substantially improves the burst error
tolerance for most layers in CNN models.

Importance-based Coding Unlike the regional operations
in the convolution and pooling layers, a fully connected layer
operates on all parameters in feature maps and the output
is a linear combination of all parameters whose weights are
obtained during the training phase. Instead of the patterns
and shapes in feature maps, the impact on accuracy from
fully connected layers is determined by the absolute value
of individual parameters. Recall that interleaved coding only
redistributes the long sequence of errors without reducing the
number of errors. As a result, the interleaved coding does not
improve the error tolerance for fully connected layer. This
explains the result in Fig. 11(d) where the interleaved coding
shows similar accuracy as the baseline.

.08 .08
3 8
506 5 0.6
3 3
<04 <04
S 0.2 | I wio coding 3 0.2 [I wio coding
= [w/ coding = [v/ coding
0 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
(a) Error rate (b) Error rate
%08 508
© o
506 5 0.6
8 g
<04 <o04
[v/ coding [v/ coding
0 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
(c) Error rate (d) Error rate

Fig. 10: Top-1 accuracy of ResNet18 under different block error
rate with the split point after (a) first, (b) second, (c) third, and
(d) forth residual module.

.08
[9)
o
506
(53
51
<04
§' 0.2 | I w/o coding [/o coding
[v/ coding [v/ coding
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
(a) Error rate (b) Error rate
.08 ..08
8]
506 506
3 8
<04 <04
a a "
° 0.2 | [w/o coding ° 0.2 [w/o coding
0 [w/ coding 0 - w/din
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
(c) Error rate (d) Error rate

Fig. 11: Top-1 accuracy of VGG11 under different BLER with
the split point after (a) 1st, (b) 5th, (c) 19th, and (d) 26th layer.

To enhance error tolerance for fully connected layers, we
adopt importance-based coding, a family of codes that pro-
vide Unequal Error Protection (UEP) capability for data with
different importance. The basic idea is that a corrupted high-
valued parameter will have more impact on accuracy than a
corrupted low-valued parameter (e.g., near 0). Hence the high
valued parameters are more important and should be protected
against high error rates by UEP.

To showcase the importance-based coding, we repeat the
previous burst error experiment for the DeepSpeech2 model
[36]. DeepSpeech? is a recurrent neural network (RNN) speech
recognition model consisting of fully connected and activation
layers. Similar to ResNetl8, it is often used as a benchmark to
evaluate distributed ML systems [37]. To show the maximum
possible improvement, we assume an ideal importance-based
coding scheme that ensures the error rate of a particular
parameter is inversely proportional to its value while the total
error rate is constant. In practice, the importance coding applies
UEP techniques such as Hadamard matrix [38], network slicing
[39], and repetition [40], to the high-valued parameters to

100 100

I /o codlng I v/ codmg
[w/ Codmg [w/ codlng
& i
50 50
g l ; ‘ l l
b A
0.2 0.2 0.4
(a) Error rale (b) Error rate
00 100
.o cofimg | [w/o coding
I w/ coding [w/ codin
i]
50 50
= i =
0 i 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
(c) Error rate (d) Error rate

Fig. 12: Word error rate of DeepSpeech2 under different block
error rate with the split point after (a) first, (b) second, (c) third,
and (d) forth splitting point.

reduce their error rate under the same overall error rate. Fig. 12
shows the Word Error Rate (WER) performance for 4 splitting
points at each quadrate point. A higher WER means lower
speech recognition accuracy We see the ideal importance-based
coding generally reduces WER by up to 60%. When block error
rate (BLER) is less than 50%, the WER with ideal importance-
based coding is maintained at < 20%, less than 1% increase
from the 0% block error rate case. The result shows that the
ideal importance-based coding effectively enhances the error
tolerance for fully connected layers.

B. Additional Operations

Layer-wise error-tolerance profiling As demonstrated in
Sec. IV and IV-C, the accuracy performance of a distributed
ML model depends on the link error rate, as well as on which
layer the error occurs. To ensure a certain level of accuracy,
we need to profile the mapping between the error rate and
inference accuracy, and use the profile to estimate accuracy
under a given link condition at runtime. We first reuse the
experimental settings in Sec. IV and IV-C where the ML
data experience random errors. For split ML models, since the
splitting point may change at runtime, we profile the error rate
to accuracy mapping for each layer offline. For FL. models,
we only profile a single error rate to accuracy mapping by
applying the errors to the weights of all except the batch norm
layers. We vary the error rate and record the corresponding top-
1 testing accuracy. Suppose the error rates are {ry,7s,...,71},
with corresponding accuracy {ai,asg,...,ar}. To approximate
the error rate to accuracy mapping function, we empirically
choose an exponential function G to fit the mapping, so that
the L1 distance between the inferred accuracy and measured
accuracy is minimized.

G= mln Z la; — G(r;) 2)

Since the error tolerance strongly depends on error rate
(Sec. IV), we can thus accurately estimate the accuracy with
G, for a given error rate (derived from the link SNR). The

Redundancy
mask

MaxPool

MaxUnpool

Values: [12, 3,24]
Indices: [(0, 0),
(2,0),
(2,2)]
Size: (4, 4)

f2[TFope]
Feature ﬁ%; 'z

map 10[0 [11]1

Fig. 13: An illustration of feature map pruning: (1) generate

redundancy mask, (2) Multiply redundancy mask to the feature
maps, (3) Convert pruned feature maps to sparse representation.

BN

Sparse
Representation

profiling is performed offline and only needs to be done once
for a given ML model. The profiling latency is determined by
the device’s computation power as well as the size and depth
of the ML model. We observe a profiling latency of < 10s for
split ML and < 10man for FL with 54-layer ResNet18 model
on a server with Nvidia RTX2080 TI GPU.

Feature map pruning The aforementioned error-tolerance
techniques effectively reduce the need for frequent retransmis-
sions, but do not reduce the data size which may induce a large
initial transmission overhead. To further improve efficiency, we
introduce a feature map pruning design for split ML. It is
observed that most parameters (i.e. the float point numbers)
in the feature maps are dropped by the first maxpooling and
activation layers after the split point, i.e., their values do not
affect the inference result of the ML model [41]. Hence, these
redundant parameters can be safely removed to reduce the
ML data size. However, it is challenging to determine which
parameters are redundant since it depends on the model input
and cannot be predicted without running the layers first.

To efficiently find the redundant parameters, we introduce
a quantized NN based redundancy prediction scheme. The
general idea is that since the parameters are made redundant
by the first activation and pooling layers after the split point,
we can feed the feature maps to such layers to find which
parameters are redundant. It is time-consuming to run full
layers so instead, we use their quantized versions which have
the same operations. As shown in Fig. 13, when a feature
map is generated at the split point, it is first quantized and
then fed to a redundancy finder branch, which consists of the
first activation and pooling layers after the split point, and
an unpooling layer [42] to map the pooling layer’s output
to their corresponding positions in the original feature maps.
The output of the redundancy finder branch is a feature map
that has the same size as the original feature map, but with
redundant parameters converted to zero. We replace all non-
zero parameters in this feature map output to 1 and multiply it
element-wisely with the original feature maps. The feature map
becomes sparse after such a pruning step and can be efficiently
stored using standard sparse representation [43] with a data size
of only a fraction of the original feature maps.

VI. EVALUATION
A. Experimental setup

We evaluate NeuroMessenger on a Matlab-based 5G link-
level simulation framework [44], which simulates an end-to-end

TABLE I: The top-1 inference accuracy and the end-to-end latency performance of NeuroMessenger split ML and baselines

under a Matlab simulated noisy 3GPP NR uplink.

Split point 1 Split point 2 Split point 3 Split point 4
teomm | Acc. [retr. ? teomm | Acc. [retr. ? tcomm | Acc. [retr. ? teomm | Acc. [retr.?
VGGI1 - CIFAR100

36.0ms 79.7% 26.7ms 83.3% 4.8ms 82.0% <Ims 65.8%

Ours (-91.9%) (-8.1%) None | (-87.7%) (-3.1%) None | (-91.2%) (-11.1%) None | (-93.0%) (-23.5%) None
433.8ms 68.2% 216.8ms 85.2% 54.3ms 83.0% 13.6ms 65.4%

Raw (-0.0%) (-20.7%) None (-0.0%) (-0.9%) None (-0.0%) (-3.5%) None (-0.0%) (-24.0%) None
33.8ms 60.14% 24.5ms 72.8% 2.6ms 61.4% < Ims 59.8%

Pruned (-92.2%) (-30.1%) None (-88.7%) (-15.3%) None (-95.2%) (-28.6%) None (-93.0%) (-30.5%) None
46.6ms 86.0% 38.0ms 86.0% 4.1ms 86.0% < Ims 86.0%

Pruned-HARQ | (-89.3%) (-0.0%) Yes (-82.4%) (-0.0%) Yes (-92.4%) (-0.0%) Yes (-93.0%) (-0.0%) Yes

ResNet18 - CIFAR100

16.0ms 76.8% 6.0ms 78.4% 2.5ms 80.0% 2.Ims 80.0%

Ours (-39.6%) (-4.0%) None (-55.9%) (-2.0%) None (-63.2%) (-0.0%) None (-36.4%) (-0.0%) None
26.5ms 66.5% 13.6ms 78.6% 6.8ms 68.3% 33ms 68.3%

Raw (-0.0%) (-16.9%) None (-0.0%) (-1.8%) None (-0.0%) (-14.6%) None (-0.0%) (-14.6%) None
14.9ms 76.8% 3.8ms 63.7% 2.2ms 62.0% 1.7ms 63.9%

Pruned (-43.8%) (-4.0%) None | (-72.1%) (-20.4%) None | (-67.6%) (-22.5%) None | (-48.5%) (-20.1%) None
23.Tms 80.0% 6.0ms 80.0% 33ms 80.0% 2.6ms 80.0%

Pruned-HARQ | (-12.8%) (-0.0%) Yes (-55.9%) (-0.0%) Yes (-51.5%) (-0.0%) Yes (-21.2%) (-0.0%) Yes

DeepSpeech2 - LibriSpeech (Accuracy represented by WER)

3.5ms 17.7% 3.5ms 18.0% 3.5ms 25.0% 3.5ms 17.7%

Ours (-62.8%) (+0.5%) None | (-62.8%) (+2.2%) None | (-62.8%) (+42.0%) None | (-62.8%) (+0.5%) None
9.4ms 22.3% 9.4ms 27.6% 9.4ms 47.2% 9.4ms 80.1%

Raw (-0.0%) (+26.7%) None (-0.0%) (+56.8%) None (-0.0%) (+168.2%) | None (-0.0%) (+355.1%) | None
3.0ms 35.4% 3.0ms 37.6% 3.0ms 68.7% 3.0ms 100.0%

Pruned (-62.8%) | (+101.1%) | None | (-62.8%) | (+113.6%) | None | (-62.8%) | (+290.3%) | None | (-62.8%) | (+468.2%) | None
4.6ms 17.6% 4.6ms 17.6% 4.6ms 17.6% 4.6ms 17.6%

Pruned-HARQ | (-51.1%) (-0.0%) Yes (-51.1%) (-0.0%) Yes (-51.1%) (-0.0%) Yes (-51.1%) (-0.0%) Yes

TABLE II: The top-1 inference accuracy and the end-to-end latency performance of NeuroMessenger FL. and baselines under a

Matlab simulated noisy 3GPP NR uplink.

VGGL11 - CIFAR100 ResNet18 - CIFAR100 DeepSpeech? - LibriSpeech

tcomm Acc. retr. ? tcomm Acc. retr. ? tecomm WER retr. ?
8.80s 84.0% 0.77s 82.6% 20.12s 18.7%

Ours (-35.6%) | (-2.3%) | None | (-35.8%) | (-4.0%) | None | (-38.8%) | (-6.3%) | None
13.66s 86.0% 1.20s 80.0% 31.36s 17.6%

HARQ (-0.0%) (-0.0%) Yes (-0.0%) (-0.0%) Yes (-0.0%) (-0.0%) Yes

5G NR uplink with complete MCS implementations as well as
3GPP compliant channel models. By default, we use 16QAM
modulation with 490/1024 LDPC code rate. Varying the link
SNR leads to different levels of error rate. The OFDMA uses
20MHz bandwidth with 30KHz subcarrier spacing. We adopt a
2 x 2 MIMO setting with 2 PUSCH layers. The transport block
size is set to 30216 bits. For the physical channel, we use 3GPP
CDL-C clustered delay line channel [45] which represents a
generic multi-path channel. Specifically, we set the SNR of the
channel to -2dB by default to simulate a noisy link. Using a
high order MCS, even with a relatively high SNR, may result
in a similarly noisy link.

Models and dataset. We evaluate NeuroMessenger on two
of the most widely deployed applications: image classification
and speech recognition. For image classification, we choose
ResNetl18 and VGGI11 to represent state-of-art CNN models.
For testing purposes, we use CIFARI00, a standard image
classification data set with 100 classes and 100 test images for
each class. For speech recognition, we use the DeepSpeech2
model applied on the LibriSpeech dataset, a large corpus of
reading English speech containing 5 hours of testing speech.

Baselines For split ML experiments, we compare the perfor-
mance of NeuroMessenger with the following three baselines:

(i) Raw does not perform any additional processing on the
ML data. (ii) Pruned prunes the redundancy of the ML data
but does not perform the two coding schemes that enhance
error tolerance. (iii) Pruned-HARQ prunes the redundancy
and leverages the built-in HARQ retransmission mechanism
in 5G. The retransmission version (RV) in HARQ, i.e., the
maximal number of retransmission attempts, is set to 16. For
FL experiments, since feature map pruning and error-tolerant
enhancement schemes are not applicable, we use only one
baseline: HARQ, i.e., the default retransmission scheme in 5G
instead of the retransmission controller in NeuroMessenger.

B. End-to-end performance

Table I and II show the inference accuracy and end-to-end
latency performance for split ML and FL. In this experiment,
we set the maximal tolerable accuracy loss of NeuroMessenger
to 80% (—6% compared to the original model) for image
classification models, and the maximal WER increase to 20%
(+3.4% comparing to the original model) for the speech
recognition model. Compared to the raw baseline, the pruned
baseline reduces up to 95.2% transmission times accompanied
by 9.3% to 113.1% higher loss in accuracy. This means
NeuroMessenger’s redundancy pruning design effectively re-
duces the intermediate data size. But it sacrifices the error

©
S

—F—ours

Minimal tolerable acc.

©
@

Top-1 accuracy
@
o

Top-1 accuracy

75

~
a

0.2 0.4 0.6

BLER

0.2 0.4 0.6

BLER

0.8

(a) (b)

(a)

Raw
-------- Pruned-HARQ
Ours (80% acc.)
—-—-Ours (70% acc.)

Latency (ms)
Latency (ms)

0.2

(b)

Fig. 14: Top-1 accuracy of (a) split ML (VGG11 split at 15-th Fig. 15: End-to-end running latency of (a) split ML (ResNet18
layer) and (b) FL (VGG11), as the block error rate of the link split at 15-th layer) and (b) FL (ResNetl8), as the block error

increases.

rate of the link increases

S —————— — sl e Ny

@
o

B D
o o
Top-1 accuracy

n
(=}

o

Layer

Fig. 16: End-to-end running latency and top-1 accuracy at BLER=0.2 when splitting at each layer in VGG11.

tolerance capability, implying the need for error enhancing
coding. The pruned-HARQ baseline achieves the best ac-
curacy due to frequent retransmissions which also causes 20%
more communication latency than the pruned baseline. Our
NeuroMessenger design strikes the best balance between the
accuracy and latency: its transmission time only increases 1%-
5% on top of the pruned baseline due to the computation time
of coding while the accuracy is maintained above the maximal
tolerable accuracy most of time, which is 0.9%-30.5% higher
than the raw and pruned baselines. In summary, the experiment
shows the performance advantages of NeuroMessenger over
the baselines in split ML and the necessity of the coding
mechanisms for enhancing error-tolerance.

C. Impact of Link Conditions

To investigate the performance of NeuroMessenger under
different link conditions, we vary the SNR of the 5G link so
that the block error rate increases from 0.1 to 0.95. Fig. 14 and
Fig. 15 show the top-1 accuracy and latency results of ResNet18
in split ML and FL, respectively. We set the minimum tolerable
accuracy to 80% for both split ML and FL. In Fig. 14, we see
accuracy slightly decreases to 82% as the BLER increases. It
remains at the same level as the retransmission controller de-
termines that error tolerance can no longer satisfy the accuracy
requirement and enables retransmission. Note that even for the
raw baseline in Fig. 14, the NeuroMessenger retransmission
controller can still guarantee a minimal latency of 80% by
enabling retransmission earlier.

In Fig. 15(a), we see the latency of raw and pruned-HARQ
baselines increases exponentially with BLER as the number of
retransmission increases. The latency of NeuroMessenger stays
constant until BLER= (.5 due to the absence of retransmis-
sions. Note that if we lower the minimal tolerable accuracy to
70%, the latency stays constant until BLER= 0.9. The FL’s
latency in Fig. 15(b) shows a similar trend but with a lower
constant latency.

In summary, this experiment shows that the retransmission
controller can effectively guarantee the accuracy under a wide
range of block error rate, and NeuroMessenger keeps the
communication latency constant when the block error rate is
within the error tolerance of the ML data, which is determined
by the ML model, layer, and minimal tolerable accuracy.

D. Impact of Split Point

Recall that in split ML, the error tolerance is different across
layers (Sec. IV). Hence the effectiveness of NeuroMessenger
may vary with different choices of split point. To investigate
this effect, we reuse the experimental setup in Sec. VI and split
a VGGI11 model at each layer. Fig. 16 shows the latency and
corresponding accuracy performance. We see that NeuroMes-
senger achieves 40%-99% latency reduction comparing to the
raw baseline and 20% comparing to the pruned-HARQ baseline
for all layers. Although pruned-HARQ achieves the highest
accuracy, NeuroMessenger achieves similar accuracy for most
layers and significantly higher accuracy than the raw baseline.
In summary, this experiment and the experiment in Sec. V-A
jointly show that the advantage of NeuroMessenger applies to
a wide range of split points on typical NN models.

VII. CONCLUSION

In this paper, we have explored the error tolerant capability
in distributed ML data transfer and its implications on com-
munication efficiency. We characterize the error tolerance of
various popular distributed ML systems and develop a novel
system, NeuroMessenger that enhances and utilizes such error
tolerance. We believe our work envisions a new direction
towards efficient distributed ML over wireless edge networks.

ACKNOWLEDGEMENT

The work reported in this paper is supported in part by a Sony
Research Award, and by the NSF under Grants CNS-1901048,
CNS-1925767, CNS-1952942, and CNS-2128588.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
D. Purkayastha, F. Jiangping, D. Frydman, G. Verin et al., “Mec in 5g
networks,” ETSI white paper, vol. 28, pp. 1-28, 2018.

E. Peltonen, M. Bennis, M. Capobianco, M. Debbah, A. Ding, F. Gil-
Castifieira, M. Jurmu, T. Karvonen, M. Kelanti, A. Kliks et al., “6g white
paper on edge intelligence,” arXiv preprint arXiv:2004.14850, 2020.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738-1762,
2019.

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” [EEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322-2358, 2017.
Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615-629, 2017.

C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery
for inference acceleration on the edge,” in I[EEE INFOCOM 2019-IEEE
Conference on Computer Communications. 1EEE, 2019, pp. 1423-1431.
D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 1-15.

E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” in Proceedings of
the 2018 Workshop on Mobile Edge Communications, 2018, pp. 31-36.
J. Chen and X. Ran, “Deep learning with edge computing: A review,’
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674, 2019.

I. Stoica, D. Song, R. A. Popa, D. Patterson, M. W. Mahoney, R. Katz,
A. D. Joseph, M. Jordan, J. M. Hellerstein, J. E. Gonzalez et al., “A berke-
ley view of systems challenges for ai,” arXiv preprint arXiv:1712.05855,
2017.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273—
1282.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5g,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 74-80, 2014.

3GPP, “5g system (5gs); study on traffic characteristics and performance
requirements for ai/ml model transfer,” TR 22.874 V0.0.0, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with mem-
ory,” in Advances in Neural Information Processing Systems, 2018, pp.
4447-4458.

3GPP, “Nr; study on integrated access and backhaul,” TR 38.874 V16.0.0,
2019.

M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Fed-
erated learning with personalization layers,” CoRR, vol. abs/1912.00818,
2019.

H. Wang, M. Yurochkin, Y. Sun, D. S. Papailiopoulos, and Y. Khaz-
aeni, “Federated learning with matched averaging,” CoRR, vol.
abs/2002.06440, 2020.

T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), 2019, pp. 1-7.

N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani,
“Hybrid-fl for wireless networks: Cooperative learning mechanism using
non-iid data,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), 2020, pp. 1-7.

T. T. Anh, N. C. Luong, D. Niyato, D. I. Kim, and L.-C. Wang,
“Efficient training management for mobile crowd-machine learning: A
deep reinforcement learning approach,” IEEE Wireless Communications
Letters, vol. 8, no. 5, pp. 1345-1348, 2019.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

[39]
[40]

[41]

[42]

[43]
[44]

[45]

J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mechanism
for reliable federated learning: A joint optimization approach to combin-
ing reputation and contract theory,” IEEE Internet of Things Journal,
vol. 6, no. 6, pp. 10700-10714, 2019.

J. Kang, Z. Xiong, D. Niyato, H. Yu, Y.-C. Liang, and D. I. Kim,
“Incentive design for efficient federated learning in mobile networks:
A contract theory approach,” in 2019 IEEE VTS Asia Pacific Wireless
Communications Symposium (APWCS), 2019, pp. 1-5.

S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher,
“Deep compressive offloading: speeding up neural network inference by
trading edge computation for network latency,” in Proceedings of the 18th
Conference on Embedded Networked Sensor Systems, 2020, pp. 476—488.
P. Hu, J. Im, Z. Asgar, and S. Katti, “Starfish: resilient image compression
for aiot cameras,” in Proceedings of the 18th Conference on Embedded
Networked Sensor Systems, 2020, pp. 395-408.

M. Hamza, A. Lipovac, and V. Lipovac, “Residual block error rate
prediction for ir harq protocol,” Tehnicki vjesnik, vol. 27, no. 4, pp. 1071—
1076, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

3GPP, “Nr; physical layer; general description,” TS 38.201 V16.0.0, 2020.
——, “Nr; physical layer procedures for data,” TR 38.214 V16.4.0, 2021.
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics. PMLR, 20-22 Apr 2017, pp. 1273—
1282.

C.-Y. Hsu, A. Ortega, and M. Khansari, “Rate control for robust video
transmission over burst-error wireless channels,” IEEE Journal on Se-
lected Areas in Communications, vol. 17, no. 5, pp. 756773, 1999.

S. Lin and D. J. Costello, Error control coding. Prentice hall, 2001,
vol. 2, no. 4.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE transactions on information theory, vol. 52, no. 6, pp.
2508-2530, 2006.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,
J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. H. Engel,
L. Fan, C. Fougner, T. Han, A. Y. Hannun, B. Jun, P. LeGresley, L. Lin,
S. Narang, A. Y. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh,
D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao,
D. Yogatama, J. Zhan, and Z. Zhu, “Deep speech 2: End-to-end speech
recognition in english and mandarin,” CoRR, vol. abs/1512.02595, 2015.
S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher, “Deep
compressive offloading: Speeding up neural network inference by trading
edge computation for network latency,” in Proceedings of the 18th
Conference on Embedded Networked Sensor Systems, ser. SenSys ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
476-488. [Online]. Available: https://doi.org/10.1145/3384419.3430898
S. Jakubczak and D. Katabi, “A cross-layer design for scalable mobile
video,” in Proceedings of the 17th Annual International Conference on
Mobile Computing and Networking, ser. MobiCom *11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 289-300.

ETSI, “5g;management and orchestration; architecture framework,” ETSI
TS 128 5ss V16.4.0, 2020.

M. Kanj, V. Savaux, and M. Le Guen, “A tutorial on nb-iot physical layer
design,” IEEE Communications Surveys & Tutorials, 2020.

S. Cao, L. Ma, W. Xiao, C. Zhang, Y. Liu, L. Zhang, L. Nie, and
Z. Yang, “Seernet: Predicting convolutional neural network feature-map
sparsity through low-bit quantization,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
11216-11225.

M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in European conference on computer vision. Springer, 2014,
pp. 818-833.

PyTorch, “torch.sparse — pytorch 1.9.0 documentation,” 2020. [Online].
Available: https://pytorch.org/docs/stable/sparse.html

MathWorks, “Nr pusch throughput,” 2020. [Online]. Available:
https://www.mathworks.com/help/5g/ug/nr-pusch-throughput.html

3GPP, “Study on channel model for frequency spectrum above 6 ghz,”
TR 38.900 V15.0.0, 2018.

