
626 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 2, FEBRUARY 2022

HiveMind: Towards Cellular Native Machine
Learning Model Splitting

Song Wang , Xinyu Zhang , Senior Member, IEEE, Hiromasa Uchiyama , and Hiroki Matsuda

Abstract— The increasing processing load of today’s mobile
machine learning (ML) application challenges the stringent
computation budget of mobile user equipment (UE). With the
wide deployment of 5G edge-cloud, a new ML offloading scheme
called split ML is provisioned to enable computation-intensive
mobile ML applications by splitting an ML model across mobile
UE, edge, and cloud. However, the complex split assignment
problems pose new challenges for split ML system design. In this
paper, we introduce HiveMind, the first practical multi-split ML
system tailored for 5G cellular networks. HiveMind reformu-
lates the complicated multi-split problem to a min-cost graph
search and optimizes the distributed algorithm to drastically
reduce the signaling overhead. Benefit from its low overhead
property, HiveMind makes the optimal split decision on multiple
computing nodes in real-time and adapts the split decisions to
the instantaneous network dynamics. HiveMind also incorporates
a multi-objective mechanism that accommodates heterogeneous
objectives for a single ML task. HiveMind adapts to a wide
range of ML frameworks, including non-linear models like
Recurrent Neural Network (RNN), Federated Learning (FL),
and Multi-agent Reinforcement Learning (MARL). We evaluate
HiveMind on 5G MEC network simulators with realistic traffic
patterns and real-life MEC computation/communication profiles.
Our experiments demonstrate that HiveMind achieves the opti-
mal efficiency comparing to state-of-art split ML designs.

Index Terms— Edge computing, machine learning (ML), neural
networks, 5G mobile communication.

I. INTRODUCTION

THE booming mobile Machine Learning (ML) applica-
tions are challenging the current computing and com-

munication network architectures. Amid the rapid maturity of
mobile machine learning platforms, e.g., Google ML kit [1],
Apple Core ML [2], and Fritz AI [3], more than 10% of
mobile apps have incorporated ML models, with use cases
ranging from face identification, object detection, to intelli-
gent personal assistants and augmented reality [4]. Recent
studies also proposed to integrate ML into 5G networks
to optimize network functions such as QoS-aware routing,

Manuscript received March 1, 2021; revised September 13, 2021; accepted
September 22, 2021. Date of publication October 6, 2021; date of current
version January 17, 2022. This work was supported by the Faculty Innovation
Award of Sony Research Award Program (https://www.sony.com/en/SonyInfo/
research-award-program/#FacultyInnovationAward). (Corresponding author:
Song Wang.)

Song Wang and Xinyu Zhang are with the Department of Electrical and
Computer Engineering, University of California at San Diego, La Jolla,
CA 92093 USA (e-mail: sowang@ucsd.edu; xyzhang@ucsd.edu).

Hiromasa Uchiyama and Hiroki Matsuda are with Sony Group Cor-
poration, Tokyo 141-8610, Japan (e-mail: hiromasa.uchiyama@sony.com;
hiroki.matsuda@sony.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2021.3118403.

Digital Object Identifier 10.1109/JSAC.2021.3118403

resource allocation, and slice management [5]–[8]. In addition,
the emerging 6G is envisioned to bring human-like intelligence
into every aspect of networking systems [9]. However, due to
the computation resource constraints on mobile devices, such
mobile ML applications typically only use miniature models
hundreds of times smaller than standard ML models [4],
which hampers model accuracy and limits their use cases.
The stringent computation power budget further renders the
more computation-heavy ML training tasks impossible. On the
other hand, offloading these tasks to the cloud may incur high
data transfer overhead and sometimes can be even slower than
on-device computing [10].

To enable computation-intensive mobile ML applications,
recent work explored edge computing infrastructures [11]
that offer cloud-like services within the cellular network.
To minimize latency without compromising model accuracy,
such edge ML implementations can split a model into multiple
parts, and allocate them among different computing nodes,
including the user equipment (UE), mobile edge comput-
ing (MEC) servers, and cloud servers. For the commonly
used deep neural network (DNN) model, for example, each
part corresponds to multiple DNN layers. Each node executes
the model up to a specific layer, and sends the intermediate
data to the next node. With such UE-edge-cloud synergy,
a split ML system can dynamically assign parts of a model
to the computing nodes based on network conditions and
computation resources, to alleviate the pressure of computation
on UE devices and potentially optimize end-to-end latency and
energy consumption [10], [12]–[15].

Existing research abstracts the ML model splitting as redis-
tributing the computing load across a generic client-server
link. As the 5G network infrastructure evolves to embrace
built-in computing capabilities, an important question arises:
Can the 5G networking and computing stack itself natively
support AI/ML through model splitting? Unlike in the abstract
model, a single 5G site often consists of many MEC servers
distributed across different vantage points in the RAN/core
network. Splitting the ML model across such a unique dis-
tributed system, potentially involving dynamic links and UEs
with different performance objectives, becomes a non-trivial
problem.

More specifically, such a cellular-native model splitting
needs to address three unique challenges. (i) Multi-split ML
models over a 5G network. 5G’s native MEC support [11] and
flexible traffic steering capabilities can enable a new multi-split
scheme among the UE, multiple MEC servers, and the cloud
server. Fig. 1 shows a typical case of ML inference model

0733-8716 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9059-1726
https://orcid.org/0000-0001-9688-8056
https://orcid.org/0000-0002-0612-6662
https://orcid.org/0000-0003-2355-1932

WANG et al.: HiveMind: TOWARDS CELLULAR NATIVE ML MODEL SPLITTING 627

Fig. 1. An example of 5G cellular native ML: An UE, three MEC nodes,
and a cloud server form a 5-hop MEC chain. Each device executes a part of
the ML model to a certain layer and send the intermediate data to the next
device on the chain.

splitting, where an image classification NN is split across a
UE, three MEC nodes, and a cloud server. The intermediate
output from each partition of the NN is transmitted to the
next computing node via wireless backhaul or wired links.
The inference result is output at the last partition of the
network. In such multi-split scenarios, the number of split
options grows exponentially with the number of ML layers
and computing nodes, and are often on the order of millions.
In addition, the split decision needs to accommodate the
computing resources distributed across the network, along with
varying network conditions. Due to all such complexities,
the linear searching method in existing ML model splitting
designs cannot be applied to multi-split systems.

(ii) Multi-objective split. Compared with a single atomic
model, the split ML decision over 5G networks should be
optimized to flexibly accommodate different objectives, e.g.,
inference/training latency, energy consumption, and privacy
preservation. Some of these objectives are based on best
efforts, i.e. maximization/minimization, whereas some are
quality assurances, i.e., ensuring a performance metric does
not exceed a predefined threshold. Accommodating such het-
erogeneous objectives simultaneously poses a new challenge
for the splitting decision making.

(iii) Splitting for non-linear ML models. Existing single-split
approaches are limited to standard linear ML models with
a chain of layers. Thus, a simple linear search across all
inter-layer cuts suffices to identify the optimal split point.
However, other commonly used ML paradigms, e.g., Recurrent
Neural Network (RNN) and Collaborative Learning, require
additional information transfer between the same or different
modules. Directly applying split ML on them fails to account
for the extra communication overhead and may result in highly
suboptimal performance.

In this paper, we propose HiveMind , a novel multi-split
ML framework that addresses the aforementioned challenges
through three design choices. (i) A distributed split ML
algorithm. We first reformulate the multi-split problem into
a min-cost graph search. To avoid the huge communication
overhead that renders the existing solutions infeasible, we
propose a distributed min-cost graph algorithm tailored for

5G MEC networks. Through graph pruning and information
aggregation, our algorithm dramatically cuts down the number
of inter-node signaling messages, thus enabling an efficient
and practical multi-split without the loss of optimality on split
decisions. (ii) A mechanism to simultaneously accommodate
best efforts objectives (e.g., minimizing energy cost) and qual-
ity assurance objectives (e.g., latency threshold) in the splitting
decision. The mechanism discriminates the quality assurance
metrics with a non-linear mapping function, and enforces
the quality assurance objectives without compromising the
optimality of the best effort metrics. (iii) Splitting non-linear
ML models. We further broaden the application domain of
our split ML algorithm by extending it to non-linear ML
models, including recurrent ML models and collaborative ML
models, whereas the latter involves Multi-agent Reinforcement
Learning (MARL) and Federated Learning (FL). Our solution
takes into account the iterative feedback structures commonly
seen in such models while requiring little modifications to the
standard algorithm.

We evaluate HiveMind on a 5G network simulation frame-
work, which represents a tree-structured integrated access and
backhaul (IAB) network and edge/cloud computing devices
co-located on all IAB gNBs, CN, and cloud server, in compli-
ance with 3GPP’s provisioning of 5G MEC architecture [16],
[17]. The evaluation framework adopts synthetic traffic traces
that faithfully reproduce the traffic characteristics of a cel-
lular network. Our experimental results demonstrate that
(i) HiveMind is able to adapt to a wide range of traffic
load. It outperforms cloud and UE-based baselines by up
to 89.8% under high traffic load. HiveMind benefits more
from MEC capability gains than the baselines by up to
47.2%, especially from the MECs co-located with IAB gNBs.
(ii) HiveMind can simultaneously accommodate the best effort
and quality assurance objectives, and outperforms the heuristic
linear multi-objective by 22.9% on the best effort objective.
(iii) HiveMind reduces the parameter feedback latency on both
RNN and collaborative learning models, and outperforms the
standard split by up to 2.3× on multiple criteria.

HiveMind, to our knowledge, marks the first practical
multi-split ML system tailored for 5G MEC networks. Its
contributions can be summarized as follow: (i) A novel
cellular native split ML algorithm that enables the practical
multi-split ML by distributively optimizing split assignment
with negligible overhead. (ii) A multi-objective mechanism
that adapts different types of objectives to a single multi-split
task. (iii) Extension of the multi-split algorithm to widely
adapted non-linear ML models including RNN and collabo-
rative ML. (iv) Validation of HiveMind on a 5G simulator
against state-of-art ML splitting designs.

II. RELATED WORK

A. Distributed ML

Recent research explored distributed machine learning to
reduce the processing time of mobile ML applications lever-
aging edge or cloud computing devices. Ho et al. [18] pro-
posed to use a centralized parameter server to aggregate
the local gradient, and schedule training tasks on the local
nodes. Agarwal et al. [19] designed AllReduce that further

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

628 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 2, FEBRUARY 2022

extends this paradigm to a tree structure, by accumulating
and passing the local gradient from child nodes to parent
nodes. Foster et al. [20] introduced a fully distributed para-
digm where each node broadcasts the local gradient to all other
nodes. In addition to the latency-oriented parallel comput-
ing paradigms, Konevcny et al. [21]–[26] proposed Federated
Learning (FL) framework with an emphasis on preserving data
privacy. FL obscures the local update from local nodes so
that the parameter server cannot infer sensitive information,
but can still keep the training accuracy. The above distributed
ML designs assume a client/server architecture, where each
computing client trains one instance of the whole model.
In contrast, our split ML framework partitions an ML model
so that the different parts are executed sequentially on differ-
ent computing nodes within a cellular network. In addition,
distributed ML mainly focuses on ML training. Our split ML
framework can be applied to both training and inference.

B. ML Model Splitting

ML model splitting has garnered much interest in the
past two years. In particular, the 3GPP standardization group
recognized the performance benefits for ML model split-
ting and has been investigating protocol-level primitives to
support ML model splitting within the cellular edge/core
networks [17]. Much of the related research verified the advan-
tages of ML model splitting and focused on partitioning the
DNN computing load to meet certain optimization objectives.
Kang et al. [10] proposed to identify a single splitting point to
cut a DNN inference model in two parts, executed by a generic
client and server respectively, to optimize running latency
or energy consumption. Hu et al. [27] further extended the
single split scheme to DNN models with directed acyclic
graph representation. The single-split approach splits between
the UE and one server, and the performance improvement
is largely limited by the computation resource and the link
condition of the server machine. In contrast, our multi-split
approach can flexibly assign the ML model to multiple MECs
in order to adapt to dynamic link and computation resources.
Narayanan et al. [28] proposed an optimization-driven split
ML framework, PipeDream, that assigns parts of a model
to multiple GPUs to reduce training latency on a single
machine. Among the existing research in distributed/parallel
ML, PipeDream shares the most similarity with our work.
However, PipeDream assumes static links between GPUs
where the partitioning is done once and for all. The linear
programming based optimizer itself incurs around 8 s running
latency on a server-level machine [28], which renders it
unsuitable for real-time splitting of ML inference models in
dynamic cellular networks.

C. Tailoring ML Models to Edge Computing Systems

Besides model distribution and partitioning, existing work
also explored other mechanisms to customize ML models
for edge computing. Teerapittayanon et al. [29] proposed an
early-exit mechanism, BranchyNet, which adds exit points
in the middle of an ML model to cut the inference delay
at the cost of lower accuracy. A follow-on distributed ML

design, DDNN [30], further proposed that each end device
sends the output of its exit point to an edge server which
performs aggregation. Since the early exit mechanism skips
part of the model structure, the inference accuracy is largely
compromised. So far no early exit design achieves more
than 80% of inference accuracy from the early exit points
comparing to the full model [29]–[34]. Besides, it is feasible
to compress the intermediate data transfer between UE and
cloud in order to reduce communication latency [35]–[42]. The
state-of-art intermediate data compression design [42] achieves
up to 5000/1 compression ratio by training a model-specific
NN compressor while suffering a relative small accuracy
loss of 8% due to the information loss during compression.
Comparing to above two mechanisms, our split ML framework
does not modify the model structure or intermediate data
and reduces latency without sacrificing the inference accuracy.
Note that the early-exit and compressing approaches are not
in conflict with our split design. Instead, it is possible to apply
them on top of HiveMind, i.e. adding early exit points at the
split points or compressing the intermediate data out of the
split points, to further optimize the processing latency.

III. THE NEED FOR MULTI-SPLIT IN 5G MEC NETWORKS

In this section, we explain the motivation for adopting
multi-split ML and demonstrate its advantages with an exam-
ple scenario. In a mobile ML application, the total overhead is
attributed to two factors: the computation overhead in running
the neural network layers, and the communication overhead in
transmitting data between computing nodes, e.g., UE upload-
ing an input image to the cloud server. Conventional NN
model runs on either UE or cloud server. UE-based ML models
execution suffers from large computation overhead due to its
stringent computation budget and cloud-based ML often incurs
large communication overhead due to limited communication
link capacity. In comparison, split ML achieves a flexible
tradeoff between computation overhead and communication
overhead by dynamically splitting a ML model between the
UE and cloud [10], [16], [27]. It can achieve low computation
overhead when the link capacity is high and avoid high
communication overhead otherwise. In addition, comparing to
existing single-split schemes [10], [16], [27], multi-split ML
further improves the efficiency by leveraging a chain of MEC
servers, striking a middle ground between UE and cloud with
more computation budget than UE-only and a faster and more
stable communication link than cloud-only model execution.

To showcase the advantage of multi-split ML, we consider
a simple scenario where a UE, MEC, and cloud server split a
3-layer NN, as shown in Fig. 2. The layers have computation
loads of 0.5, 1, and 4 units and communication load of 1.2, 1,
and 4 units. The three computation nodes have computation
capacity of 1, 3, and 10 units respectively and the link
between UE and MEC has a capacity of 2 units. We assume
a simple overhead model where the overhead is load divided
by capacity, e.g., transmitting input on UE-MEC link takes
1.2
2 = 0.6 unit time. The link capacity between MEC and

cloud is set to vary between 1
10 to 1 to simulate the link

dynamics. We compare multi-split ML with two schemes:

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: HiveMind: TOWARDS CELLULAR NATIVE ML MODEL SPLITTING 629

Fig. 2. The latency comparison of 4 split architectures: (1) UE computing,
(2) Cloud single split, (3) Edge single split, (4) Multi-split on UE, edge, and
Cloud.

cloud ML, where UE always upload the input to the cloud
for computation, and single-split ML, where the model is split
between UE and the cloud. Fig. 2 shows the total overhead of
three schemes as the MEC-cloud link capacity decreases from
1 to 1

10 . We see cloud ML’s overhead continuously increases
as the communication overhead increases (i.e., link capacity
decreases). Single-split ML starts with all layers assigned to
the cloud and transfers the layers to UE when link capacity
further drops, to avoid increasing communication overhead.
Mutli-split ML achieves a even lower total overhead on top
of single-split ML by assigning the last two layer to MEC
instead of UE. This experiment shows that multi-split avoids
the increasingly large communication overhead in cloud ML
and achieves a lower computation latency than single-split
ML. Note that this experiment only demonstrates an simplified
typical scenario. In Sec. VII, we will show that in a more
detailed and realistic 5G setting, our multi-split ML reduces
total latency by 37 to 90% compared with cloud ML and 32 to
55% compared with single-split ML.

IV. HIVEMIND MULTI-SPLIT DESIGN

In this section, we first provide a primer on the 5G MEC
system that enables the multi-split ML framework. Then we
introduce HiveMind multi-split design for both ML inference
and training, and its runtime optimization under network
dynamics.

A. A Primer on 5G MEC for ML

Similar to the legacy 4G architecture, 5G networks separate
the Radio Access Network (RAN) and Core Network (CN)
functions. Yet Integrated Access and Backhaul (IAB) is intro-
duced in the RAN as a unique feature, where basestations
(i.e., gNBs) form a tree-like topology with multi-hop wireless
backhaul links [16]. Due to the flexible deployment of data
plane, ETSI group [11] provisions a flexible deployment of
MECs at different vantage points within the 5G infrastructure,
including the gNBs, RAN aggregation point, and the core
network site. The flexible MEC deployment provides mobile
applications with easier and faster access, especially for the
gNB MECs which can be reached by UEs in one hop.

The communication overhead is hence expected to be much
shorter than remote cloud access [12], rendering it feasible to
accelerate ML inference/training. On the other hand, the 5G
User Plane Function (UPF) enables the free steering and
routing of application traffic among UEs and MECs attached
to different network entities [43], allowing the formation of
multi-hop MEC chains. All above 5G features jointly enable
the multi-split ML paradigm where an ML model is split into
multiple parts and assigned to a chain of MEC nodes, as shown
in Fig. 1.

B. Problem Formulation

1) The Multi-Split Problem: We now describe the
multi-split problem formulation. For simplicity, we assume
a linear DNN and a single objective of minimizing infer-
ence latency. In later sections, we will extend the design to
non-linear ML models and multi-objectives.

Consider a scenario where P −2 MEC nodes in 5G system,
along with a UE and a cloud server, form a P -node MEC
chain where the first node p = 1 is the UE and the P -th
node p = P is the cloud server. The UE, serving as the
source node, initiates a split ML task that utilizes the MECs
along the route from UE to the cloud. We refer to the cloud
server as the sink node, as it is the last node along the chain
that may undertake part of the ML processing load. The ML
model to be split across the network has L layers. We define
a split decision as two functions u(p) = m,w(p) = n to
represent assigning layers m to n to the node p. Suppose the
layer-wise computation latency τp

l and communication latency
εpl of transferring intermediate data are known to all P nodes
through profiling [10], the problem of finding the optimal split
decision to minimize the total latency can be expressed as
follow:

min
u,w

P∑

p=1

w(p)∑

l=u(p)

τp
l +

P∑

p=1

εpw(p) (1)

s.t. u(p) ≤ w(p), ∀p (2)

u(p) = w(p− 1) + 1, 2 ≤ p ≤ P (3)

w(P) = L (4)

The first term in Eq. (1) sums up the computation latency of
all P nodes and the second term sums up the communication
latency of transferring intermediate data across adjacent nodes.
Eq. (2)-(4) ensure the assignment includes all L layers in the
ML model in correct order without overlapping. Note that it is
valid to “skip” a node by assigning no layer to it. In such cases,
the communication latency over the skipped node still needs
to be included since within the IAB network the intermediate
data has to travel through the skipped node.

2) Mapping Split Assignments to Graph: The above opti-
mization framework uses functions u(p), w(p) as variables.
Although they can be treated as vectors to fit into existing
integer programming solutions, the mapping between them and
the computation latency, i.e. τw(p)

u(p) , is a non-convex function
since τp

l is arbitrary. Hence, it is hard to solve the problem
directly with integer programming. If we take the brute-force
approach and examine all possible split options, then it

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

630 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 2, FEBRUARY 2022

requires calculating the latency for all
(
P+L−1

L

)
split options

(split L layers into P sets while allowing 0 layer in a set since
it is possible not to assign layers to a node), e.g., a ResNet50
[44] split on 5 nodes has 4.0 × 107 options. Examining such
a huge amount of split options requires significant processing
time, let alone the overhead caused by gathering the latency
profiles and distributing the split decisions to all MECs. Hence
a direct search, as done in existing single-split solutions,
cannot meet the real-time requirement of cellular native split
ML. To overcome these limitations, we modify the variables
and reformulate the problem as a classic linear optimization
- shortest path problem. We first convert the search space for
the split decision into a directed graph G = (V,E). The set
of vertices:

V = {vp
m,n|∀p, 1 ≤ m ≤ n ≤ L} (5)

embodies all possible assignment decisions on all P nodes,
where a single vertex vp

m,n represents the decision of assigning
layers m to n to node p. To avoid confusion, we use the term
“vertex” to refer to the vertices in the graph and “node” to
refer to the computing nodes in the cellular network. Then
we can easily connect the vertex following the constraints in
Eq. (2)-(4):

E = {(vp
m,n, v

q
x,y)|p < q, m ≤ n, x ≤ y,

× x = n+ 1, y = L when q = P} (6)

where an edge (vp
m,n, v

q
x,y) represents choosing the assignment

vq
x,y after the assignment vp

m,n. To be consistent with the
objective function in Eq. (1), we set the weight on the edge
(vp

m,n, v
q
x,y) to be the cost of choosing the decision vq

x,y

after vp
m,n, i.e., the sum of the communication latency in

transferring intermediate data from p to q, and the computation
latency on the node q:

c(vp
m,n, v

q
x,y) =

y∑

l=x

τq
l + εpn (7)

Finally, we add a pair of virtual start/end vertices vs, ve

connecting to vertices corresponding to the first and last node
with zero-cost edges, i.e., {v1

m,n|1 ≤ m ≤ n ≤ L} and
{vP

m,n|1 ≤ m ≤ n ≤ L} respectively, to serve as source
and destination in the graph.

The optimization objective now becomes finding the short-
est path from vs to ve, and the vertices along this path
form the assignment decision functions u,w, i.e., u(p) = m,
w(p) = n if and only if vp

m,n belongs to the shortest
path. By reformulating the optimization, we can derive the
optimal u(p), w(p) by finding the shortest path with classic
linear programming based solutions and avoid the complicated
non-standard optimization problem in the original formulation.

C. Split Cost Information (SCI) Design

At first glance, the problem can be straightforwardly solved
by applying the well-known Dijkstra’s algorithm. However,
Dijkstra’s algorithm requires reconstructing the entire graph
on a central controller node, and the size of the graph grows
exponentially with the number of layers and linearly with the

number of nodes. In the previous example of ResNet50 run-
ning on 5 nodes, the corresponding graph comprises 4.5 × 105

edges, each requiring the profiling of computation and com-
munication latency to determine the cost. Despite the relatively
low computation complexity of Dijkstra’s algorithm, gathering
such information and feeding it back to the controller incurs
significant overhead, especially when the decision needs to be
updated frequently under network dynamics.

We now introduce our Split Cost information (SCI) design
which can efficiently solve the graph representation of the
split ML problem. SCI inherits the logic of the distributed
Dijkstra’s algorithm [45], [46] and is tailored to the split ML
graph to tackle the information gathering overhead. In SCI,
each vertex calculates its own shortest path by traversing its
neighbor vertices’ path cost, i.e. the sum of all edges on the
shortest path of a vertex. Specifically, given that a vertex A’s
neighbor vertices’ path costs are known,A selects the neighbor
vertex with the minimal sum of shortest path cost and edge
cost as its predecessor vertex on the shortest path, and the
sum value as its path cost. The shortest path can then be
found by iteratively following the predecessor vertex all the
way to the destination. Hence, to determine the shortest path,
a vertex needs to know the path costs of all its neighboring
vertices. However, acquiring such information may induce
non-trivial communication overhead. In existing distributed
algorithms [45], [46], a vertex needs to send individual mes-
sages to all its neighbor vertices with its shortest path cost
value. Note that each node has

(
L
2

)
vertices (choosing the start

and stop point from L layers for a split assignment) and each
vertex has (L+1)P

4 outgoing edges on average (a vertex vp
m,n

has outgoing links to all the following nodes after p, which is
P
2 nodes on average, and for each node, the vertex has links
to all L − n + 1 vertices with starting layer n+1, which is
L+1

2 vertices on average). Therefore, a node needs to send(
L
2

) (L+1)P
4 = O(L3P) messages. In the previous example

of ResNet-50 running on 5 nodes, this translates to 3 × 106

messages, each with only one cost value. Sending such a large
number of short messages all at once incurs huge overhead
and can easily congest the network, rendering it impossible to
directly apply the existing algorithm to the split ML problem.

1) Transforming the Split Graph: To reduce the com-
munication overhead for distributed shortest path algo-
rithm, we introduce a split graph transformation technique.
We observe that for a vertex on computing node p, the neigh-
boring vertices are mostly located on the adjacent node
p − 1, except for those vertices that skip the node p − 1.
For example, edge (v1

1,3, v
3
4,6) assigns the 6 layers between

node 1 and 3 and skips node 2. If we can eliminate such
edges, we can limit the communication strictly between two
adjacent nodes, and the O(L3) short messages from a node can
be aggregated as one single message. To this end, we transform
the graph by introducing relay vertex vP

Rn to represent the
“null” workload assigned to the skipped node. In the above
case, edge (v1

1,3, v
3
4,6) can be broken down into two edges

(v1
1,3, v

2
R3) and (v2

R3, v
3
4,6), both connecting the vertices of

neighboring nodes. Fig. 3 showcases the transformation graph
of splitting a 2-layer model on P nodes with relay vertices.
With this measure, we aggregate the O(L3) path cost values

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: HiveMind: TOWARDS CELLULAR NATIVE ML MODEL SPLITTING 631

Fig. 3. Graph representation of the HiveMind multi-split problem (From left to right): (1) The mapping from the split assignment to the graph representation.
(2) The original split graph representation has numerous edges across multiple MEC nodes, incurring huge communication overhead. (3) The pruned and
transposed graph limits the edges strictly between adjacent MEC nodes and reduces the size of the messages carrying the cost information.

into one message, thus saving the overhead of sending O(L3)
individual messages.

2) Slimming the Inter-Node Messages: The use of relay
vertex in the graph transformation reduces the messaging
overhead. But the size of a message increases to O(L3) times
due to the aggregation and may still incur non-negligible
transmission latency when the ML model has a large number
of layers. For example, for a ResNet-152, each message would
contain 4 × 106 path cost values. Suppose each path cost
value is stored in float format, the size of the message would
be 80 MB, which is too large for real-time signaling. We thus
further reduce the size of each message by pruning the number
of path cost values in a message. We first transpose the graph,
i.e., reverse the direction of all edges and reverse the role of
the start/end nodes, which does not change the optimal shortest
path. We then group the vertices vp

m,n on a node p by the start-
ing layer m. We denote such a group of vertices as a split point
set vp

m. Fig. 3 demonstrates the split point sets on different
nodes. We see that in the transposed graph, a vertex’s neighbor
vertices must belong to the same split point set. This is because
according to Eq. (6), a vertex’s neighbor vertices all share the
same starting layer. Recall that in the shortest path algorithm,
a vertex only needs to know the minimal path cost among its
neighbor vertices in order to calculate its own path cost. This
means that only the cost of the optimal vertex in a split point
set, i.e. the vertex with the minimal cost, is required by the
shortest path calculation, and instead of sending cost values
for all vertices, a node can just send one per split point set.

Leveraging the above property, we introduce an optimal split
cost algorithm, as described in Algorithm 1. The algorithm
simultaneously reduces the message size and finds the shortest
paths for vertices on a node. Line 1 to Line 5 first calculates
the path cost of all vertices. Then, based on the aforementioned
property, Line 7 finds the optimal path cost ζp

i for each split
point set. These path cost values are packed into a signal-
ing message called Split Cost Information (SCI) message,
as shown in Fig. 4, and sent to the adjacent node to serve as the
input of the optimal split cost algorithm on that node. In the
meantime, Line 6 finds the stop layer index np

i of the vertices
corresponding to the optimal paths, which are later used as the

Algorithm 1 Optimal Split Cost Calculation
Input: Optimal cost for each split point set on node

p+ 1: {ζp+1
0 , ζp+1

1 , . . . , ζp+1
L+1}, layer-wise

computation latency: {τp
0 = 0, τp

1 , . . . , τ
p
L},

layer-wise communication latency from node
p− 1: {εp−1

0 , εp−1
1 , . . . , εp−1

L } where εp−1
0

corresponds to model input
Output: Optimal cost for each split point set (SCI

message) {ζp
0 , ζ

p
1 , . . . , ζ

p
L+1}, Optimal split

points {np
0, n

p
1, . . . , n

p
L+1}

1 i← 0 ;
2 while i ≤ L do

; // Iterate split point sets
3 for j ← i to L do

; // Iterate vertices in a split
point set

4 θi
j ←

∑j
l=i τ

p
l + εp−1

i + ζp+1
j+1 ; // Calculate

the cost of j-th vertex in i-th
split point set

5 ;

6 np
i ← argminj(θ

i
j) ;

7 ζp
i ← minj(θi

j) ;
8 if np

i > i+ 1 then
9 for z ← i+ 1 to np

i do
10 np

z ← np
i ;

11 ζp
z ← ζp

i −
∑

l=i zτ
P
l ;

12 i← np
i ;

13 i← i+ 1

key information for split assignment decision making. A SCI
message contains only L+1 = O(L) shortest path cost values
corresponding to L layers in the model plus a relay node layer.
For the previous ResNet-152 example, it means a less than
4KB message size, nearly 24000× smaller than the original
80MB message. The optimal split cost algorithm design can
thus be safely extended to models with a large number of
layers without inducing large overhead. To further improve the
efficiency of the algorithm, we observe that if np

i for a split

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

632 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 2, FEBRUARY 2022

Fig. 4. A showcase of split cost information (SCI) message transmitted from
node p to node p − 1. The message contains a optimal path cost for each
split point set.

point set i is greater than i, then np
f = np

i for all split point sets

f ≤ np
i . This is because the costs θf

j on split point sets f ≤ np
i

is just θi
j minus a constant

∑f
e=i+1 τ

p
l and the optimality of

ni
p holds for these split point sets. Hence, we compare np

i with
i in line 8 and skip the computation for iteration i+ 1 to np

i

if np
i > i+ 1.

3) SCI Protocol in 5G Networks: We now introduce how
to execute the above SCI solution framework in 5G MEC
networks. As illustrated in Fig. 5, the operation consists of
two processes: (1) SCI update, (2) Split ML task. The SCI
update runs along the upstream direction, i.e., from sink
node to source node, whereas the split ML task runs on the
downstream direction. During the SCI update process, a node
calculates the shortest path costs with Algorithm 1 and sends
the SCI message to its upstream node. Since the downstream
SCI message is required by the algorithm, the SCI update
starts from the sink and moves upstream towards the source
node. The split ML task starts immediately after the SCI
update is completed. During the split ML run-time, each node
receives the ML intermediate data from its upstream node,
executes the ML model up to a certain split point, and sends
the intermediate data to its downstream node. A node chooses
its own split point based on the calculation results from the
SCI update and the upstream node’s split point. Specifically,
recall that Algorithm 1 derives the stop layer index of the
optimal vertices np

i for each split point set. Since the vertices
in a split point set represent split assignments with the same
starting layer i, then np

i is the optimal split point for node
p if its upstream node splits at layer i − 1. Hence, given
the upstream node’s split layer index x, a node p can easily
identify its optimal split point by finding np

x+1. Note that since
the source node always executes the ML model from the first
layer, its optimal split point is always n1

1. A split ML task
process finishes when the entire ML model is executed and
the output is sent back to the source or the cloud server for
further application-specific processing.

Owing to the split graph transformation and SCI message
design, the SCI protocol achieves high efficiency in solving
the multi-split assignment problem: A node only sends out
one SCI message to its adjacent node per SCI update and
the message size is only a few KB. Combined with the low
complexity of the optimal split cost calculation algorithm

Fig. 5. Split DNN procedure: 1© SCI update: each node calculates its shortest
path costs and signal its upstream node with SCI message, 2© Split ML task:
each node chooses its own split point and execute the layers.

(O(L2)), the SCI update process can be completed in an
instant. In our experiment, we observe that the average running
time for one SCI update is only 27 ms.

The low running time of SCI update is crucial for combat-
ing network dynamics. Due to the variation of the wireless
channel and background traffic demand, the link throughput
between MECs often varies drastically over time. Conse-
quently, the communication cost profiles used by the optimal
split cost calculation are likely to expire very quickly. As a
result, the optimal split points calculated by an SCI update
also expire quickly, leading to a sub-optimal split. A fast SCI
update process means the process can update the optimal split
points at a fast pace and thus adapt to more severe network
dynamics.

D. Cost Analysis

In this section, we provide a simple analysis to examine the
advantages of our split ML approach in terms of computation
and communication cost. With the assumption that τP

l ≤ τp
l ≤

τ1
l , ∀l, p, i.e. the cloud server has the minimal layer-wise com-

putation latency and the UE has the maximal, we can easily
deduce that the minimal total computation latency is

∑L
l=1 τ

P
l

and maximal is
∑L

l=1 τ
1
l . Note that the maximal total compu-

tation cost equals the total cost in that case because UE-only
model execution does not entail any communication overhead.
Since SCI always selects the split decision with the minimal
cost, the maximal possible communication cost in a split ML
task is

∑L
l=1 τ

1
l −

∑L
l=1 τ

P
l , i.e., the difference between the

maximal and minimal total computation cost. In other words,
SCI allows up to

∑L
l=1 τ

1
l −

∑L
l=1 τ

P
l of communication

before switching from split ML to conventional UE-only ML.
This indicates that unlike conventional cloud-based ML whose
communication cost may grow unbounded under poor link
conditions, SCI is able to gracefully degrade to the UE-only
execution when link capacity becomes too low.

E. Extension to Split DNN Training

The above design focuses on splitting a single-pass ML
inference model. In contrast, ML training is an iterative

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: HiveMind: TOWARDS CELLULAR NATIVE ML MODEL SPLITTING 633

bi-directional process: a forward inference pass, same as
the ML inference process, is followed by a backward pass,
which travels through the layers in reverse order to calculate
the parameter updates using intermediate results from the
forward pass [28]. The shared intermediate result means a
node needs to have the same set of layers for both the forward
and backward passes. Hence, only one split assignment is
needed. Similar to split inference, we can formulate the split
assignment as a graph and derive the optimal split assignment
by finding the shortest path. However, two additional costs
need to be considered in the edge cost of the graph. The
first one is the cost of running the backward pass, including
both computation and communication cost. The second is the
cost of passing the layer parameters when the split assignment
changes. To better explain parameter passing, consider a case
where two MECs p1 and p2 are initially assigned with layer 1-
2 and 3-4 respectively. Later the assignment changes to 1-3 for
p1 and 4 for p2. In this case, the parameters of layer 3 need
to be passed from p2 to p1. The parameter passing cost only
exists in training because in inference the parameters from
all layers are fixed and can be loaded to MECs prior to the
inference task, while in training the parameters vary rapidly.
Assuming the layer-wise training cost τ ′pl , ε′pl and the cost of
passing l-th layer’s parameter from p to q ηp,q

l are known,
the cost for an edge is the sum of the forward and backward
passes:

c(vp
m,n, v

q
x,y) =

y∑

l=x

(τq
l + τ ′ql) + εpn + ε′pn +

∑

l∈LT

ηp,q
l (8)

where LT is a set of the layers required to be transferred from
p to q. In the case where the layers needs to be transferred
from q to p, we replace ηp,q

l with ηq,p
l . Therefore, to enable

split training, we simply need to modify the corresponding
edge cost computation (Line 3) in Algorithm 1:

θj ←
j∑

l=i

(τp
l + τ ′pl) + εp−1

i + ε′p−1
i +

∑

l∈LT

ηp,q
l + ζp+1

j+1 (9)

F. Runtime Optimization Under Network Dynamics

The foregoing discussion assumes that the network dynam-
ics can be counteracted by frequent SCI updates for most of
time, which is corroborated by our experiments in Sec. VIIB.
However, due to the sparse high variance in 5G links [47],
the latency information in the SCI messages may still occa-
sionally expire at the time when the split ML is executed. As
a result, the corresponding split decisions become outdated
and highly sub-optimal. Furthermore, the latency information
in an SCI message is often aggregated across multiple hops
before it reaches an upstream node, during which the links may
experience larger dynamics. So the optimal decisions made at
these upstream MECs are more likely to expire.

To showcase this phenomenon, we create a simplified split
DNN scenario with 1 UE and 5 MECs on the route. The link
capacities are {4000, 2000, 800, 400, 100}Mbps for each hop
starting from the UE. We generate dynamic traffic according to
the background UE density and demand distributions extracted

Fig. 6. Link dynamic showcase: the split ML latency surges at 120ms and
450ms due to high variances in link capacity.

from a real-world cellular network trace [48]. Fig. 6 shows the
time series of total split latency. We see that at t = 120ms and
450ms, the split latency surges to over 500 ms. As illustrated,
this is because the split assignment is made at t = t1 when
the access link capacity is c(t1), while the split task runs at
t = t2 when the link capacity drops to c(t2), making the split
assignment outdated.

To tackle the link dynamics, we introduce a simple predic-
tive splitting mechanism to the SCI design. This mechanism
leverages existing cellular link capacity forecast schemes [49]
to predict the inference latency. Recall that in Eq. (7), the edge
cost involves the communication latency εpn, which can be
estimated by the link capacity cp,p+1(t) and the intermediate
data size of n-th layer sn:

εpn(t) =
sn

cp,p+1(t)
+ ψn (10)

where ψn is the MEC overhead for transferring n-th layer
intermediate data, including the network stack overhead and
5G signaling overhead, which can be profiled in advance. From
Fig. 6 we see the latency spikes are caused by the link capacity
variation between the SCI message at t1 and the split task at
t2. We denote such time gap as Δt = t2− t1. Ideally, if Δt is
known in advance, a node p at t1 can forecast the link capacity
at t2 cp,p+1(t2) = cp,p+1(t+Δt) and then calculate the com-
munication latency εpn(t2) at t2 from Eq. (10), thus eliminating
the effect of link dynamics. However, Δt is determined by
the dynamics of upstream links and the split assignment of
upstream nodes, both of which are not known to node p.
Nonetheless, since the upstream nodes only run a part of an
ML model, the variation in Δt is largely limited, often smaller
than the link coherent time at node p. Hence, we estimate Δt
on a node by averaging the time gaps from previous g split
tasks on this node and calculate the communication latency
accordingly. Note that since procedure 1 and 2 are mirrored,
different nodes have different Δt, e.g. node 2 in Fig. 5 has
smaller Δt than node 4. In the case where Δt is smaller than
link coherent time, we simply disable predictive split as it is no
longer necessary. Experiments in Sec. VII shows the predictive
split can eliminate over 95% of latency spikes under realistic
cellular link dynamics when the link capacity prediction error
is less than 13%.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

634 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 2, FEBRUARY 2022

V. HIVEMIND MULTI-OBJECTIVE SPLIT

It is straightforward to apply the HiveMind multi-split
to metrics other than latency. One can simply replace the
layer-wise latency profiles τp

l and εpl with the corresponding
cost profiles, e.g., the energy consumed for running layer l.
However, a 5G MEC application often needs to account for
a mix of metrics simultaneously [11], [50]. Depending on
the specific application, these metrics may require different
objectives. There are two categories of performance objectives
defined in 5G [50]: (i) Best effort, where a metric needs to
be optimized to the best effort, e.g., reducing the energy cost
as much as possible, (ii) Quality assurance, where a metric
needs to be limited by a certain threshold, e.g., making sure
the latency is below 100ms. It is non-trivial to apply multiple
metrics with different objectives to the shortest path solutions.

The canonical multi-metric shortest path solution linearly
combines the metrics as the edge cost in the graph [51]:

c(vp
m,n, v

q
x,y) =

M∑

j=1

wj(
y∑

l=x

(τj)
q
l + (εj)p

n) (11)

where (τj)
p
l and (μj)

p
l are the computation and communication

costs of the j-th metric, and wj is the corresponding weight.
Such the linear combination method does not require any
modification to the HiveMind operations other than the edge
cost calculation. However, this method does not distinguish
the best effort objectives from quality assurance objectives,
and cannot represent the threshold of the quality assurance
objectives. Since the objectives of different metrics are often
conflicting, e.g. optimizing latency may lead to increased
power consumption, the linear combination method may lead
to excessive optimization on the quality assurance objectives
and compromise the best effort objectives. For example,
in Sec. VIID, we run a multi-objective split task with a
best effort objective on energy consumption, and a quality
assurance objective on latency whose threshold is 120ms.
We observe that comparing to the optimal method, the linear
combination unnecessarily optimizes the latency to 75ms
while increasing energy consumption by 29%.

To address the above problem, we introduce a non-linear
weight function design. The high-level idea is to restrain
the weight of quality assurance objectives in the edge cost
when the metric is well below the threshold so that the best
effort objectives are not affected, and quickly increase the
weight of the quality assurance objectives when the metric
approaches the threshold to prevent the quality assurance
violations. Doing so requires a non-linear mapping between
the metric to its weight in the edge cost. Hence, we use
non-linear weight functions to reshape the quality assurance
metrics, before linearly combining them with the minimization
metrics. Suppose there are B objectives in a split ML task,
where the first C objectives are quality assurance and the
remaining are best effort. We define φj =

∑y
l=x(τj)

q
l + (εj)p

n

as the cost of the j-th objective on edge (vp
m,n, v

q
x,y). Then

the total cost of the edge can be calculated as:

c(vp
m,n, v

q
x,y) =

C∑

j=1

Wc(φj) +
B∑

j=C+1

wbφj (12)

Fig. 7. The edge cost calculation in HiveMind multi-objective: the quality
assurance metrics are reshaped by non-linear weight functions before linearly
combined with the best effort metrics.

whereWc is the non-linear weight function and wb is the linear
weight for best effort objectives.

Fig. 7 shows the calculation of the edge cost. By design,
Wc should be a monotonically increasing convex function
that asymptotically approximates the constraint x = Φj .
We empirically find that the inversely proportional function
y = − 1

x−Φj
, x ∈ (−∞,Φj) achieves the best optimization

performance. Given the updated edge cost definition, we can
simply plug it in the optimal latency calculation algorithm
(Line 3 in Algorithm 1) to enable the multi-objective split.

VI. SPLITTING NON-LINEAR NEURAL NETWORKS

The HiveMind design we have introduced so far is applica-
ble to DNNs. In this section, we describe how to extend the
design to non-linear NN models, including Recurrent Neural
Network (RNN) and collaborative learning models.

A. Split RNN

RNN models are widely used for applications with temporal
correlated and sequential inputs, such as natural language
processing and speech recognition. An RNN model consists
of a sequence of identical recurrent modules. Each recurrent
module contains several linearly-organized layers. Part of the
model output called “hidden states” is feed to the next module
along with the input sequence. Fig. 8 (a) demonstrate the
topology of a typical RNN model. A straightforward way to
adapt HiveMind to RNN is to split the recurrent module since
it shares a similar linear structure as a standard DNN. This
would require running the recurrent module repeatedly on the
MEC network. In the common case where the first layer is on
the source node and the final output layer is on a MEC node
or cloud server, the hidden states generated at the final layer
need to be fed back to the source node everytime the recurrent
module is repeated. The size of the hidden states is usually in
the same order as the intermediate data passed across adjacent
layers, if not larger [52]. Hence, transferring the feedback
to the source, usually across multiple hops, causes a large
overhead.

To address this problem, we propose to linearize the RNN
splitting problem so it becomes similar to the DNN splitting.
Consider an RNN with R recurrent modules, each consisting
of L layers. As shown in Fig. 9, we regard the l-th layer

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: HiveMind: TOWARDS CELLULAR NATIVE ML MODEL SPLITTING 635

Fig. 8. Non-linear NN showcase: (a) Recurrent neural network (RNN),
(b) Collaborative learning.

on the r-th recurrent module as layer (r − 1) × L + l. The
remaining input sequence {xr+1, xr+2, . . . , xP−1} and the
previous output sequence {y1, y2, . . . , yr−1} are transferred
along with the intermediate output. This way we can reuse
the HiveMind mechanism while avoiding sending the hidden
state across multiple hops within the MEC network.

B. Split Collaborative Learning

Collaborative learning is a widely adopted distributed ML
training paradigm. Common collaborative learning models
include Distributed Deep learning (DDL), Multi-agent Rein-
forcement Learning (MARL), and Federated Learning (FL).
In a collaborative learning setup, multiple identical copies
of a model are deployed on different nodes called agents,
each training its models with locally observed environment
and states. In order to achieve global optimum, the agents
periodically transfer their model parameters to each other or
to a central controller to merge the parameters, as shown
in Fig. 8(b). The model parameters are usually on the order
of 100 MB [53], significantly larger than inter-layer interme-
diate data which are on the order of 100 KB (Sec. VIIB). As a
result, the parameter transfer cost constitutes a significant part
of collaborative learning.

To optimize the runtime cost of an agent network,
the HiveMind design needs to account for the cost of parame-
ter transfer. The parameter transfer happens after calculating
the final layer of an agent model. Hence for split assignments
on node p that involve the final layer, i.e., vp

i,L, 0 ≤ i ≤ L−1,
we need to add the parameter transfer cost to the edge costs.
Suppose the parameter transfer cost at node p ωp is known
through link capacity profiling. Then, we can simply add ωp to
the standard HiveMind training (Eq. 9) to reflect the parameter
transfer cost:

θj ←
j∑

l=i

(τp
l + τ ′pl) + εp−1

i + ε′p−1
i

+
∑

l∈LT

ηp,q
l + ζp+1

L+1 + ωp (13)

We can then replace the cost calculation for vp
i,L, 0 ≤

i ≤ L − 1, i.e., the L-th iteration of the inner for-loop
in Algorithm 1, with Eq. (13) to enable split collaborative
learning. Note that since the split assignments that do not
involve the final layer are not affected by the parameter transfer
cost, the cost calculations in the first L− 1 iterations remain
unmodified.

Fig. 9. A showcase of linearized RNN in HiveMind split RNN design.

Fig. 10. Simulated 5G network topology and UE trajectory.

VII. EVALUATION

A. Simulation Setup

We evaluate the HiveMind framework on a custom built 5G
network simulator. Below we introduce the key components
of the simulator.

1) Network Topology: We evaluate HiveMind on 2 repre-
sentative 5G networks: a 5G mmWave IAB network and a 5G
sub-6 GHz network. As illustrated in Fig. 10, the 5G mmWave
IAB network consists of 6 IAB nodes, each equipped with a
mobile MEC. The IAB nodes are deployed in a 1km × 1km
region, and form a tree-topology in compliance with the 3GPP
Release-15 guidelines [16]. Traffic from the IAB nodes is
aggregated and flows to the core network through the donor
IAB (node 6) and its wired backhaul link (link F). There are
2 additional MECs (node 7 and 8) in the core network. A cloud
server is connected to node 8 through public IP, serving as
the sink node. The sub-6 GHz network consists of a single
basestation. There is one MEC in the core network and a cloud
server in public IP. All wireless link capacities are configured
according to the maximum uplink MCS’ bitrate specified by
3GPP [54], as shown in Table I.

2) UE Mobility: A target UE within the IAB network’s
coverage area requests the split ML task at the beginning
of each experimental trial. It keeps running the task while
moving along a pre-defined trajectory at a speed of 40km/h.
We calculate the UE’s access link SNR using the Friis
model assuming an EIRP limit of 40dBm as specified by the

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

636 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 2, FEBRUARY 2022

FCC [55]. We then convert the SNR to link bitrate by 5G
NR CQI to MCS mapping table [56]. Although this channel
and link model does not account for sophisticated propagation
effects, it should suffice to generate a similar level of dynamics
as real-world mobile cellular links, which is critical for testing
the model splitting.

3) Background Traffic: We generate the number of UEs
and individual UEs’ bit-rate distribution following the traffic
emulation approach in [48], which has been cross-validated
with real-world traffic traces. We then feed the background
UEs’ bit-rate samples along with the target UE’s bit-rate
to a widely-adopted Proportional Fair Scheduler (PFS) [57],
which allocates the channel resources and determines the link
capacity for the target UE. In addition, we scale the UE
population and individual UEs’ bitrate by 2, 1, and 1

2 to create
high, mid, and low background traffic scenarios.

4) ML Cost Profiles: The computation and communication
cost profiles of an ML model are crucial for a faithful repre-
sentation of the model workload, and also serve as inputs to
the HiveMind framework. To obtain realistic ML cost profiles,
we build a Python-based latency/energy profiling tool as a
stand-alone package for Pytorch. The profiling tool traverses
the ML model object and registers a forward hook and a
backward hook for each layer (a torch.nn.functional
object). To generate latency profiles, the hooks measure the
processing time of a layer during inference and training phases
using Python’s built-in time.perf_counter() module
with an accuracy of ±1μs. The per-layer processing time val-
ues are organized in the order of the layers as the computation
latency profile. The hooks also record the output size of the
layer for inference and training, which is used to calculate
the communication latency based on Eq. (10). For computing
energy profiles, we adopt PyJoules [58], a third party energy
footprint monitor that measures the computing energy of a
Python function. For communication energy profiles, due to
the lack of 5G interface on our devices, we adopt the link
bitrate/power mapping data from the latest operational 5G
measurement [47] to convert the instantaneous link bitrate in
our simulation to power consumption. We measure the cost
profiles on the following four sets of machines to represent
the UE, IAB MEC, core MEC, and cloud server, respectively:
(i) Raspberry Pi 3 Model B+, (ii) MacBook Air 2020 with
Apple M1 CPU and 16GB unified memory, (iii) A PC with
Ryzen 3800X CPU, 64GB DDR 4 RAM, and Nvidia RTX
2080 GPU (iv) A server with Intel 9990XE CPU, 128GB
DDR4 RAM, and 4 × Nvidia RTX 1080Ti GPUs.

B. Multi-Split Performance Validation

1) Impact of Background Traffic: To evaluate the effective-
ness of HiveMind under different background network traffic
intensities, we run HiveMind inference and training along with
three baseline approaches: UE Only, which runs the whole
model on the UE; Cloud Only, which runs the whole model
on the cloud server; Single Split, which splits the network
only between the UE and a cloud server as in [10]. We use
ResNet18, a widely used image classification CNN with a
moderate number of layers (52) as the split ML model. For

TABLE I

LINK SETTINGS

inference tasks, we choose the total processing latency as the
optimization objective. For training tasks, we choose the sum
energy consumption of IAB MECs and UE as the optimization
objective, since the training tasks are not as latency-sensitive
as the inference tasks.

Fig. 11 and 12 plot the running cost distribution of each
method under the mmWave IAB and sub-6GHz networks,
respectively. We see that for both mmWave IAB and sub-
6GHz networks, HiveMind achieves the minimal running cost
for all traffic intensities. For mmWave IAB split inference
(Fig. 11(a)), the latency of the cloud-only baseline quickly
increases to over 300ms as the network becomes more loaded,
while the single split converges to the UE-only baseline due
to the increasing communication latency. HiveMind is able to
keep a stable running latency of ≤ 79ms by limiting the usage
of the core and cloud servers under high network load. For
mmWave IAB split training (Fig. 11(b)), the energy consump-
tion of the cloud-only method reaches up to 890J due to the
less power efficient low bitrate links under high network load.
HiveMind keeps the IAB nodes’ energy consumption under
400J by adjusting the split to restrain the data transfer on
the links. This set of experiments proves that in the mmWave
IAB network, HiveMind can adapt the split assignment to the
dynamic network load and outperforms all the baselines on
both the inference and training tasks.

For sub-6 GHz split inference, we observe that the running
latency of HiveMind converges to the UE-only approach as
the network load increases. The underlying reason is that,
due to the relatively lower link capacity (high communication
latency) outweighs the low computation latency on the MECs,
so that the best split strategy is simply to run the whole model
locally on the UE. The result verifies that, even when the
network condition provides no benefit for splitting the ML,
HiveMind is able to converge to the best non-split strategy
and yield the best performance.

2) Impact of ML Models: We repeat the above experiments
with three ML models with different computation and commu-
nication characteristics: VGG11, a 16-layer CNN model with
an average layer output size of 356KB; ResNet18, a 52-layer
CNN model with an average layer output size of 80KB;
R-CNN, a two-part CNN with the average layer output size
of 242KB. We define relative efficiency of a strategy as the

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: HiveMind: TOWARDS CELLULAR NATIVE ML MODEL SPLITTING 637

Fig. 11. Efficiency of (a) HiveMind split inference and (b) HiveMind split
training, in mmWave IAB network.

Fig. 12. Efficiency of (a) HiveMind split inference and (b) HiveMind split
training, in sub-6GHz network.

Fig. 13. Impact of ML models on HiveMind.

average ratio between the cost of the strategy and the cost
of the UE-only baseline under the same scenario for both
training and inference. Fig. 13 shows the results. We see that
HiveMind achieves the highest relative efficiency on RCNN,
3× over ResNet18 and 1.8× over VGG11. This is because
the large communication overhead corresponding to the larger
layer output size provides HiveMind with more improvement
margin, while a large number of layers gives HiveMind more
flexibility to split the model in more efficient ways. In other
words, HiveMind sees more performance gains with a larger
layer output size and a larger number of layers.

3) Impact of MEC Capability: In this section we examine
the performance of split ML with different MEC capabilites.
The capability changes on different MEC nodes may affect the
split ML differently depending on the MEC servers’ proximity
to the UE. Therefore, we isolate the impact of capability
change for each type of MEC. Specifically, we repeat the
above ResNet18 inference experiment and in each trial, choose
one type of MEC nodes and scale their computation latency
profiles to {×1/10,×1/2,×1,×2,×10,×20}, in order to
represent the different computational capabilities while keep-
ing the rest of the MEC nodes’ latency profiles unchanged.
The results are denoted as improved IAB, improved CN, and
improved cloud for IAB MEC nodes, core MEC nodes, and

Fig. 14. Impact of computation capability of various MECs on HiveMind
split inference.

Fig. 15. HiveMind topology adaptation showcase: the split assignment does
not change for the unchanged part of the route and the average latency
increases less than 5ms after the topology change.

the cloud server, respectively. Note that for cloud only and
single split baselines, we only evaluate the performance under
cloud server capability change since they do not use IAB or
core MEC nodes. Fig. 14 shows the latency under different
MEC capabilities. We see that as the scale increase from 1/10
to 20, the improved IAB MECs result in the most latency
reduction, 14.5% lower latency than the CN MECs, and 47.2%
than the cloud server. This implies that the split DNN benefits
the most with computational capacity improvement on IAB
MECs, which are closest to the UEs. Meanwhile, the single-
split and cloud-only approaches converge to 115 ms and
181 ms regardless of the MEC capabilities, indicating the
bottleneck of these two approaches lies in the communication
latency. We also observe that the overall latency performance
for ×10 and ×20 is very close, which shows that improving
MEC capability cannot improve the split ML’s performance
indefinitely since it is also bounded by the communication
links’ capacity.

C. Performance Under Network Dynamics

1) Impact of Network Topology Changes: In 5G IAB net-
works, the network topology may vary over time, as some
gNBs may be put into sleep, or additional gNBs are added
for load balancing purposes. Meanwhile, the UE mobility and
handoff also causes changes in the network path. To showcase
the effectiveness of our HiveMind design under such topology
dynamics, we randomly select a a period of time in the above
ResNet18 experiment where a topology change happens due to
UE mobility, and plot its corresponding workload and latency
change in Fig. 15. This topology change represents an extreme

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

638 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 2, FEBRUARY 2022

Fig. 16. Predictive splitting performance under (a) 10ms and (b) 50ms link
coherent time.

case where not only the access gNB changes from gNB1 to
gNB2 due to the UE mobility but also the number of hops on
the route increases by 1. After the topology change, we see
the workload assignment remains the same for the unchanged
part of the route. Such persistence originates from a unique
property of our HiveMind design, i.e., a MEC node’s optimal
split decision is independent of the upstream MECs (Sec. IV).
Moreover, HiveMind is stateless and does not require data
transfer between the old and new MECs upon a gNB handoff,
which further improves the responsiveness of the system in
the presence of UE mobility. We also see a less than 5 ms
increase in average latency after the topology change event.
This implies the added MEC can compensate for the extra
communication latency caused by the extended route and vice
versa.

2) Effectiveness of Predictive Split: To investigate the per-
formance of HiveMind’s predictive split under different lev-
els of network dynamics, we compare it with the standard
split DNN. We use link coherent time, i.e., the time during
which the link capacity is stable, to represent varying levels
of network dynamics. We choose 10ms coherence time to
represent extreme network dynamics and 50ms coherent time
to represent typical network dynamics in cellular networks
during rush hours [59]. We compare the predictive split with
the standard split DNN Fig. 16 shows the result. We see under
10 ms link coherent time, the predictive split still leaves 12%
of latency spikes over 100ms. As mentioned in Sec. IVE, this
is because the time gap Δt between the SCI message and the
split task is much larger than the link coherent time. With the
same amount of time gap estimation error, the link capacity
estimation is more likely to deviate from the correct value
under short link coherent time. In contrast, predictive split
eliminates all latency spikes over 100ms when link coherent
time is 50 ms, which is similar to the average look-ahead time
for predictive split in our setup. This implies the predictive
split mechanism is effective, as long as the link coherent time is
no less than the average look-ahead time of the split decision.

3) Impact of Link Prediction Accuracy: The previous exper-
iment assumes a 100% link prediction accuracy. We further
investigate the impact of link prediction errors on HiveMind’s
performance. Reusing the experiment setup for the 50ms link
coherent time, we run the split task with different link predic-
tion accuracy. We model the link prediction error as a normal
distribution with the correct link capacity as mean and various
relative prediction errors as standard deviation. We generate
random samples from these distributions for predictive split.
Fig. 17 shows the median latency against relative prediction
error. We see the latency performance deteriorates when the

Fig. 17. Impact of link prediction accuracy on the predictive split.

Fig. 18. Energy consumption and running latency comparison of HiveMind
multi-objective and baselines.

prediction error increases and the performance gain turns
to loss at 13%. Given that the state-of-art link prediction
mechanism can achieve < 10% prediction error over 91%
of time [49], the result implies the predictive split is able to
tolerate typical link prediction errors. Note that the median
latency converges to 130 ms as prediction error increases
beyond 17%, because as the prediction error increases, it is
more likely that the access link or one of the IAB links is
predicted with extremely small capacity and the predictive split
assigns the whole model to UE and IAB MECs, which takes
around 130 ms to run the model.

D. Effectiveness of Multi-Objective Split

To evaluate the effectiveness of the multi-objective split,
we repeat the above ResNet18 experiment under intermediate
network load. The objective is to minimize energy consump-
tion (best effort) while limiting the latency below 120 ms
(quality assurance). We compare HiveMind’s multi-objective
design with three baselines: Opt. latency which only optimizes
latency, Opt. energy which only optimizes energy, and linear
combine, which linearly combines the objectives to calculate
the edge cost as discussed in Sec. V. Fig. 18 shows the latency
and energy consumption distribution. We see that both Opt.
latency and Opt. energy achieve the overall minimal for their
targeted metric, while sacrificing the other metric, implying
that energy and latency are two conflicting objectives in such
split tasks. Linear combine balances the two metrics and
achieves an average cost of 75ms/476J , whose latency value
is unnecessarily low. In contrast, the HiveMind multi-objective
design further reduces the average energy consumption by
22.9% on top of linear combine while keeping the maximal
latency under the 120ms constraint. The result indicates that
HiveMind multi-objective design is able to simultaneously
accommodate the best effort and quality assurance objectives.

E. Effectiveness in Splitting Non-Linear ML Models

We investigate the performance of split collaborative learn-
ing and split RNN under varying traffic loads in the mmWave
IAB network. To evaluate the split RNN model, we build a
customized sequence labeling RNN consisting of 200 GRU

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: HiveMind: TOWARDS CELLULAR NATIVE ML MODEL SPLITTING 639

Fig. 19. Efficiency improvement of HiveMind non-linear on (a) RNN
model (GRU) and (b) collaborative learning model (QMIX) over standard
HiveMind split.

recurrent module. For the split collaborative learning model,
we choose a well known multi-agent reinforcement learning
model, QMIX [60], which consists of a central mixing model
andN RNN-based agent models. We assume the central model
is located at the cloud server (the sink) and the optimization
only applies to the agent models. For both experiments, we set
the energy consumption as the optimization objective with a
latency constraint of 120ms. We compare split RNN with
the standard HiveMind design which repeats a split recurrent
module every iteration and split collaborative learning with the
standard HiveMind which splits the agent network without
considering the parameter transfer cost. Fig. 8 shows the
relative efficiency. We see the split RNN outperforms the
standard HiveMind by 1.7× under low load and 2.3× under
high load, due to the increasing hidden state transfer cost under
the high network load. Similarly, split collaborative learning
outperforms standard HiveMind by 1.5× under high network
load, where the latter fails to account for the large parameter
transfer cost. The results prove that the split non-linear designs
can capture the unique cost components in non-linear NNs and
outperform the standard HiveMind by a large margin.

VIII. CONCLUSION

In this paper, we have explored the multi-split ML as a
new paradigm to integrate edge intelligence to 5G systems.
Our HiveMind framework distributively finds the optimal
multi-split under network dynamics and adapts to multi-
ple optimization objectives and neural network structures.
Our experiments demonstrate that HiveMind significantly
improves ML running efficiency with various network dynam-
ics, ML models, and MEC capabilities. We believe HiveMind
envisions a new direction to harness collaborative edge power
to boost ML intelligence in the 5G era.

REFERENCES

[1] L. Google. (2020). Ml Kit—Google Developers. [Online]. Available:
https://developers.google.com/ml-kit

[2] A. Inc. (2020). Core Ml—Apple Developer Documentation. [Online].
Available: https://developer.apple.com/documentation/coreml

[3] A. kodra. (2020). Awesome-Mobile-Machine-Learning. [Online]. Avail-
able: https://github.com/fritzlabs/Awesome-Mobile-Machine-Learning

[4] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at
deep learning apps on smartphones,” in Proc. World Wide Web Conf.,
2019, pp. 2125–2136.

[5] Y.3172: Architectural Framework for Machine Learning in Future
Networks Including IMT-2020, Int. Telecommun. Union, Geneva,
Switzerland, Jun. 2019.

[6] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “QoS-aware adaptive
routing in multi-layer hierarchical software defined networks: A rein-
forcement learning approach,” in Proc. IEEE Int. Conf. Services Comput.
(SCC), Jun. 2016, pp. 25–33.

[7] Z. Lin and M. van der Schaar, “Autonomic and distributed joint routing
and power control for delay-sensitive applications in multi-hop wireless
networks,” IEEE Trans. Wireless Commun., vol. 10, no. 1, pp. 102–113,
Jan. 2011.

[8] K.-L.-A. Yau, J. Qadir, C. Wu, M. A. Imran, and M. H. Ling, “Cognition-
inspired 5G cellular networks: A review and the road ahead,” IEEE
Access, vol. 6, pp. 35072–35090, 2018.

[9] Y. Xiao, G. Shi, Y. Li, W. Saad, and H. V. Poor, “Toward self-
learning edge intelligence in 6G,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 34–40, Dec. 2020.

[10] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615–629, 2017.

[11] S. Kekki et al., “Mec in 5G networks,” ETSI White Paper, vol. 28,
pp. 1–28, Jun. 2018.

[12] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[13] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[14] I. Stoica et al., “A Berkeley view of systems challenges for AI,” 2017,
arXiv:1712.05855. [Online]. Available: https://arxiv.org/abs/1712.05855

[15] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep learn-
ing model co-inference with device-edge synergy,” in Proc. Workshop
Mobile Edge Commun., Aug. 2018, pp. 31–36.

[16] Nr; Study on Integrated Access and Backhaul, document TR 38.874
V16.0.0, 3GPP, 2019.

[17] 5G System (5GS); Study on Traffic Characteristics and Performance
Requirements for AI/ML Model Transfer, document TR 22.874 V0.0.0,
2020.

[18] Q. Ho et al., “More effective distributed ML via a stale synchronous
parallel parameter server,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 1223–1231.

[19] A. Agarwal, O. Chapelle, M. Dudík, and J. Langford, “A reliable
effective terascale linear learning system,” J. Mach. Learn. Res., vol. 15,
no. 1, pp. 1111–1133, 2014.

[20] I. Foster and A. Iamnitchi, “On death, taxes, and the convergence of
peer-to-peer and grid computing,” in Proc. Int. Workshop Peer-To-Peer
Syst. Berkeley, CA, USA: Springer, 2003, pp. 118–128.

[21] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol. (TIST),
vol. 10, no. 2, pp. 1–19, 2019.

[22] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving com-
munication efficiency,” 2016, arXiv:1610.05492. [Online]. Available:
https://arxiv.org/abs/1610.05492

[23] C. Niu et al., “Billion-scale federated learning on mobile clients: A
submodel design with tunable privacy,” in Proc. 26th Annu. Int. Conf.
Mobile Comput. Netw., Sep. 2020, pp. 1–14.

[24] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “Data-driven task allo-
cation for multi-task transfer learning on the edge,” in Proc. IEEE 39th
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 1040–1050.

[25] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial Intelligence and Statistics. USA: JMLR, 2017,
pp. 1273–1282.

[26] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2015, pp. 1310–1321.

[27] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2019, pp. 1423–1431.

[28] D. Narayanan et al., “PipeDream: Generalized pipeline parallelism
for DNN training,” in Proc. 27th ACM Symp. Operating Syst. Princ.,
Oct. 2019, pp. 1–15.

[29] S. Teerapittayanon, B. McDanel, and H. T. Kung, “BranchyNet: Fast
inference via early exiting from deep neural networks,” in Proc. 23rd
Int. Conf. Pattern Recognit. (ICPR), Dec. 2016, pp. 2464–2469.

[30] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in Proc. IEEE
37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017, pp. 328–339.

[31] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural
networks for efficient inference,” 2017, arXiv:1702.07811. [Online].
Available: http://arxiv.org/abs/1702.07811

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

640 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 2, FEBRUARY 2022

[32] C. Lo, Y.-Y. Su, C.-Y. Lee, and S.-C. Chang, “A dynamic deep neural
network design for efficient workload allocation in edge computing,” in
Proc. IEEE Int. Conf. Comput. Design (ICCD), Nov. 2017, pp. 273–280.

[33] S. Leroux et al., “The cascading neural network: Building the internet
of smart things,” Knowl. Inf. Syst., vol. 52, no. 3, pp. 791–814, 2017.

[34] L. Li, K. Ota, and M. Dong, “Deep learning for smart industry: Efficient
manufacture inspection system with fog computing,” IEEE Trans. Ind.
Informat., vol. 14, no. 10, pp. 4665–4673, Oct. 2018.

[35] X. Xie and K.-H. Kim, “Source compression with bounded DNN
perception loss for IoT edge computer vision,” in Proc. 25th Annu. Int.
Conf. Mobile Comput. Netw., Oct. 2019, pp. 1–16.

[36] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD:
Joint accuracy-and latency-aware deep structure decoupling for edge-
cloud execution,” in Proc. IEEE 24th Int. Conf. Parallel Distrib. Syst.,
Dec. 2018, pp. 671–678.

[37] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep
gradient compression: Reducing the communication bandwidth for
distributed training,” 2017, arXiv:1712.01887. [Online]. Available:
https://arxiv.org/abs/1712.01887

[38] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4447–4458.

[39] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication com-
pression for decentralized training,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 7652–7662.

[40] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[41] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,” 2015, arXiv:1510.00149. [Online]. Available:
https://arxiv.org/abs/1510.00149

[42] S. Yao et al., “Deep compressive offloading: Speeding up neural network
inference by trading edge computation for network latency,” in Proc.
18th Conf. Embedded Networked Sensor Syst., 2020, pp. 476–488.

[43] F. Giust et al., “MEC deployments in 4G and evolution towards 5G,”
ETSI White Paper, vol. 24, pp. 1–24, Feb. 2018.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[45] P. A. Humblet, “Another adaptive distributed shortest path algorithm,”
IEEE Trans. Commun., vol. 39, no. 6, pp. 995–1003, Jun. 1991.

[46] M. S. Corson and A. Ephremides, “A distributed routing algorithm for
mobile wireless networks,” Wireless Netw., vol. 1, no. 1, pp. 61–81,
Mar. 1995.

[47] D. Xu et al., “Understanding operational 5G: A first measurement
study on its coverage, performance and energy consumption,” in Proc.
Annu. Conf. ACM Special Interest Group Data Commun. Appl., Technol.,
Architectures, Protocols Comput. Commun., Jul. 2020, pp. 479–494.

[48] J. Ding, X. Liu, Y. Li, D. Wu, D. Jin, and S. Chen, “Measurement-
driven capability modeling for mobile network in large-scale urban
environment,” in Proc. IEEE 13th Int. Conf. Mobile Ad Hoc Sensor
Syst., Oct. 2016, pp. 92–100.

[49] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, and W. Wei, “LinkForecast:
Cellular link bandwidth prediction in LTE networks,” IEEE Trans.
Commun., vol. 17, no. 7, pp. 1582–1594, Jul. 2017.

[50] Multi-Access Edge Computing (MEC); Support for Network Slicing,
document ETSI GR MEC 024 V2.1.1, ETSI, 2019.

[51] P. Manyem and J. Ugon, “Computational complexity, NP completeness
and optimization duality: A survey,” Electron. Colloq. Comput. Com-
plex., vol. 19, p. 9, Feb. 2012.

[52] Sgrvinod. (2020). A-Pytorch-Tutorial-to-Sequence-Labeling. [Online].
Available: https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Sequence-
Labeling

[53] H. Pan et al., “Dissecting the communication latency in distributed deep
sparse learning,” in Proc. ACM Internet Meas. Conf., 2020, pp. 528–534.

[54] Nr; Physical Channels and Modulation, document TR 38.214 V16.4.0,
3GPP, 2021.

[55] FCC 15-138A1, Federal Commun. Commission, Washington, DC, USA,
2015.

[56] Nr; Physical Layer Procedures for Data, document TR 38.214 V16.4.0,
3GPP, 2021.

[57] R. Kwan, C. Leung, and J. Zhang, “Proportional fair multiuser schedul-
ing in LTE,” IEEE Signal Process. Lett., vol. 16, no. 6, pp. 461–464,
Jun. 2009.

[58] R. R. C. Belgaid and A. d’Azémar. (2020). PyJoules PyPi. [Online].
Available: https://pypi.org/project/pyJoules/

[59] F. Malandrino, C.-F. Chiasserini, and S. Kirkpatrick, “Cellular network
traces towards 5G: Usage, analysis and generation,” IEEE Trans. Mobile
Comput., vol. 17, no. 3, pp. 529–542, Mar. 2017.

[60] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” 2018, arXiv:1803.11485. [Online].
Available: https://arxiv.org/abs/1803.11485

Song Wang received the B.S. degree in the Internet
of Things engineering from Beijing University of
Posts and Telecommunications in 2018. He is cur-
rently pursuing the Ph.D. degree in communication
system and theory with the Department of Electrical
and Computer Engineering (ECE), University of
California at San Diego, San Diego, CA, USA. His
research interests include wireless networking and
communication.

Xinyu Zhang (Senior Member, IEEE) received
the Ph.D. degree from the University of Michigan
in 2012. Prior to joining the University of California
San Diego in 2017, he was an Assistant Professor
at the University of Wisconsin–Madison. He is cur-
rently an Associate Professor with the Department of
Electrical and Computer Engineering, University of
California San Diego. His research interests include
wireless systems and ubiquitous computing. He was
a recipient of two ACM MobiCom Best Paper Award
in 2011 and 2020, the Communications of the ACM

Research Highlight in 2018, the ACM SIGMOBILE Research Highlight
in 2018, the NSF CAREER Award in 2014, the Google Research Award
in 2017, 2018, and 2020, and the Sony Research Award in 2018 and 2020.
He served as the TPC Chair for ACM MobiCom 2019, IEEE SECON 2017,
a Co-Chair for NSF millimeter-wave research coordination network, and an
Associate Editor for IEEE TRANSACTIONS ON MOBILE COMPUTING from
2017 to 2020.

Hiromasa Uchiyama received the B.E. and M.S.
degrees in engineering from Tokyo University
of Agriculture and Technology, Tokyo, Japan,
in 2006 and 2008, respectively. In 2008, he joined
Sony Group Corporation. He has been attending
3GPP RAN1 Group and working on standardizations
of 4G/5G cellular communications. He is currently
a Senior Manager at the Research and Development
Center. His research interests include sidelink com-
munication and advanced relay communication.

Hiroki Matsuda received the B.S. and M.S. degrees
in communications engineering from Tohoku Uni-
versity, Sendai, Japan, in 2008 and 2010, respec-
tively. He is currently working at Sony Group
Corporation, where he researches next generation
technologies. He is also delegate of Third Generation
Partnership Project (3GPP). His research interests
include non-orthogonal multiple access (NOMA)
and non-terrestrial network (NTN).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2022 at 02:09:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

